From short-lived H2 molecules to powerful feedback-driven galactic winds: a story

Sarah Jeffreson

Friday, Dec. 9th, 11:00CET, MPIA lecture hall

The spatial distribution and clustering of stellar feedback across galaxy discs is a key driver of galactic outflows and therefore galaxy evolution. Using a suite of high-resolution isolated galaxy simulations spanning the star-forming main sequence, I will show that clustered supernova explosions are accounted for by spatially- and temporally-coherent star formation occurring in the most massive molecular clouds. These massive molecular clouds are sustained by the constant accretion of new dense gas from the surrounding environment, in competition with the constant ejection of gas by the momentum associated with the expanding ionised regions around young massive stars. By parametrising the gas accretion rate in terms of properties of the large-scale galactic environment, I will discuss how the detailed spatial distribution of star formation and stellar feedback could be modelled as a sub-grid process in future cosmological simulations.

Background image: Robert Hurt, IPAC