TwiceAsNice
2019-02-18
|
Functions | |
def | add_circular_mask (array, radius=-1, center=-1) |
def | rebin (a, new_shape) |
def | mk_rad_mask (r0, r1=None, norm=True, center=None, dtype=np.float) |
def | mk_xinetics_actuatormap (alongRows=False) |
def | gaussian (height, center_x, center_y, width_x, width_y) |
def | moments (data) |
def | fitgaussian (data) |
def | find_transform (a, b) |
def laospy.arraytools.add_circular_mask | ( | array, | |
radius = -1 , |
|||
center = -1 |
|||
) |
@brief Create a circular mask in a masked array. circular mask is ORed to to the mask of array :param array: masked array in which the masking takes place :param [radius]: radius of the circle in pixels :param [center]: index of the center :returns: boolean array
def laospy.arraytools.find_transform | ( | a, | |
b | |||
) |
Returns the least-squares solution to the linear transformation between two coordinate systems The solution m will allow to transform between coordinate systems in the form: b[0] = m[0,0] * a[0] + m[1,0] * a[1] + m[2,0] b[1] = m[0,1] * a[0] + m[1,1] * a[1] + m[2,1] In order to not under determine the linear equations, the coordinates of at least 3 points have to be specified Parameters ---------- a : ndarray (Nx2) coordinates of N points in native coordinate system b : ndarray (Nx2) corresponding coordinates of the same N points in the target coordinate system Returns ------- m : ndarray (3x2) transformation matrix
def laospy.arraytools.fitgaussian | ( | data | ) |
Returns (height, x, y, width_x, width_y) the gaussian parameters of a 2D distribution found by a fit source: http://wiki.scipy.org/Cookbook/FittingData
def laospy.arraytools.gaussian | ( | height, | |
center_x, | |||
center_y, | |||
width_x, | |||
width_y | |||
) |
Returns a gaussian function with the given parameters source: http://wiki.scipy.org/Cookbook/FittingData
def laospy.arraytools.mk_rad_mask | ( | r0, | |
r1 = None , |
|||
norm = True , |
|||
center = None , |
|||
dtype = np.float |
|||
) |
Make a rectangular matrix of size (r0, r1) where the value of each element is the Euclidean distance to **center**. If **center** is not given, it is the middle of the matrix. If **norm** is True (default), the distance is normalized to half the radius, i.e. values will range from [-1, 1] for both axes. If only r0 is given, the matrix will be (r0, r0). If r1 is also given, the matrix will be (r0, r1) To make a circular binary mask of (r0, r0), use mk_rad_mask(r0) < 1 @param [in] r0 The width (and height if r1==None) of the mask. @param [in] r1 The height of the mask. @param [in] norm Normalize the distance such that 2/(r0, r1) equals a distance of 1. @param [in] center Set distance origin to **center** (defaults to the middle of the rectangle) @package libtim.im @author Tim van Werkhoven (werkhoven@strw.leidenuniv.nl) @copyright Creative Commons Attribution-Share Alike license versions 3.0 or higher, see http://creativecommons.org/licenses/by-sa/3.0/ @date 20120403
def laospy.arraytools.mk_xinetics_actuatormap | ( | alongRows = False | ) |
Creates a masked array with the actuator indices :returns: masked array
def laospy.arraytools.moments | ( | data | ) |
Returns (height, x, y, width_x, width_y) the gaussian parameters of a 2D distribution by calculating its moments source: http://wiki.scipy.org/Cookbook/FittingData
def laospy.arraytools.rebin | ( | a, | |
new_shape | |||
) |
Resizes a 2d array by averaging or repeating elements, new dimensions must be integral factors of original dimensions Parameters ---------- a : array_like Input array. new_shape : tuple of int Shape of the output array Returns ------- rebinned_array : ndarray If the new shape is smaller of the input array, the data are averaged, if the new shape is bigger array elements are repeated See Also -------- resize : Return a new array with the specified shape. Examples -------- >>> a = np.array([[0, 1], [2, 3]]) >>> b = rebin(a, (4, 6)) #upsize >>> b array([[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [2, 2, 2, 3, 3, 3], [2, 2, 2, 3, 3, 3]]) >>> c = rebin(b, (2, 3)) #downsize >>> c array([[ 0. , 0.5, 1. ], [ 2. , 2.5, 3. ]])