TwiceAsNice  2019-02-18
Functions | Variables
lmdemo.m File Reference

Functions

id long ()
 
 disp ('Exponential model fitting(see also ../expfit.c)')
 
popt Meyer s (reformulated) problem p0
 
 x (1:4)
 
 x (5:8)
 
 x (9:12)
 
 x (13:16)
 
 disp ('Meyer' 's(reformulated) problem')
 
 disp ('Osborne' 's problem')
 
id p0 ()
 
 disp ('Boggs-Tolle problem 3')
 
 disp ('Hock-Schittkowski problem 01')
 
 disp ('Hock-Schittkowski modified problem 52(#1)')
 
 disp ('Hock-Schittkowski modified problem 235')
 
 disp ('Hock-Schittkowski modified problem 76')
 

Variables

Unconstrained minimization fitting the exponential model x_i
 
 x
 
 options =[1E-03, 1E-15, 1E-15, 1E-20, 1E-06]
 
arg demonstrates additional data passing to expfit jacexpfit arg =[40]
 
 arg1 =[17]
 
 arg2 =[27]
 
popt Osborne s problem p0 =[0.5, 1.5, -1.0, 1.0E-2, 2.0E-2]
 
 adata =[]
 
 A =[1.0, 3.0, 0.0, 0.0, 0.0
 
 b =[0.0, 0.0, 0.0]'
 
 lb =[-realmax, -1.5]
 
 ub =[realmax, realmax]
 
popt Box
 
 C =[-1.0, -2.0, -1.0, -1.0
 
 d =[-5.0, -0.4]'
 

Function Documentation

◆ disp() [1/8]

disp ( 'Exponential model fitting(see also ../expfit.c)'  )

◆ disp() [2/8]

disp ( 'Meyer' 's(reformulated) problem'  )

◆ disp() [3/8]

disp ( 'Osborne' 's problem'  )

◆ disp() [4/8]

disp ( 'Boggs-Tolle problem 3'  )

◆ disp() [5/8]

disp ( 'Hock-Schittkowski problem 01'  )

◆ disp() [6/8]

disp ( 'Hock-Schittkowski modified problem 52(#1)'  )

◆ disp() [7/8]

disp ( 'Hock-Schittkowski modified problem 235'  )

◆ disp() [8/8]

disp ( 'Hock-Schittkowski modified problem 76'  )

◆ long()

id long ( )
virtual

◆ p0()

id p0 ( )
virtual

◆ s()

popt Meyer s ( reformulated  )

◆ x() [1/4]

x ( 1:4  )

◆ x() [2/4]

x ( 5:8  )

◆ x() [3/4]

x ( 9:12  )

◆ x() [4/4]

x ( 13:16  )

Variable Documentation

◆ A

A =[1.0, 3.0, 0.0, 0.0, 0.0

◆ adata

adata =[]

◆ arg

arg demonstrates additional data passing to expfit jacexpfit arg =[40]

◆ arg1

arg2 demonstrate additional dummy data passing to meyer jacmeyer arg1 =[17]

◆ arg2

arg2 =[27]

◆ b

b =[0.0, 0.0, 0.0]'

◆ Box

popt Box

◆ C

C =[-1.0, -2.0, -1.0, -1.0

◆ d

d =[-5.0, -0.4]'

◆ lb

lb =[-realmax, -1.5]

◆ options

options =[1E-03, 1E-15, 1E-15, 1E-20, 1E-06]

◆ p0

popt linear equation &inequality constraints p0 =[0.5, 1.5, -1.0, 1.0E-2, 2.0E-2]

◆ ub

ub =[realmax, realmax]

◆ x

x
Initial value:
=[5.8728, 5.4948, 5.0081, 4.5929, 4.3574, 4.1198, 3.6843, 3.3642, 2.9742, 3.0237, 2.7002, 2.8781,...
2.5144, 2.4432, 2.2894, 2.0938, 1.9265, 2.1271, 1.8387, 1.7791, 1.6686, 1.6232, 1.571, 1.6057,...
1.3825, 1.5087, 1.3624, 1.4206, 1.2097, 1.3129, 1.131, 1.306, 1.2008, 1.3469, 1.1837, 1.2102,...
0.96518, 1.2129, 1.2003, 1.0743]

◆ x_i

Unconstrained minimization fitting the exponential model x_i
Initial value:
=p(1)*exp(-p(2)*i)+p(3) of expfit.c to noisy measurements obtained with (5.0 0.1 1.0)
p0=[1.0, 0.0, 0.0]
int c
Definition: lutgen.py:3
popt Osborne s problem p0
Definition: lmdemo.m:47
of
Definition: lutinvert.py:5
float p[4]
Definition: PupilTestApp.cc:84
int i
Definition: meteoRRD_graph.py:145