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Star Cluster Formation: Pre-EPoS and since EPoS

® 1997-2005: Mainly self-gravitating hydrodynamical calculations with simple
equations of state

® Competitive accretion can produce an IMF-like distribution of stellar masses
® |IMF depends on mean thermal Jeans mass of initial conditions

® Bonnell et al. 1997-2006; Klessen et al. 1998-2001; Bate et al. 2002-2005; Jappsen et al. 2005

® 2006-2011: Radiative hydrodynamics (flux-limited diffusion FLD)

® Importance of thermal heating by low-mass protostars for the IMF

® Bate 2009; Offner et al. 2009; Krumholz et al. 2010, 2011; Myers et al. 2011

® Maybe the key to obtaining an IMF that is insensitive to initial conditions (Bate 2009)

® 2012-present: FLD and stellar populations (>100 stars)

® First calculations to produce realistic stellar populations (e.g. IMF and binarity)

® Bate 2012; Krumholz et al. 2012
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Outstanding problems

® What is the role of additional physics?

® Magnetic fields: Price & Bate 2008, 2009; Myers et al. 2013, 2014; Krumholz et al. 2016

® Outflows: Krumholz et al. 2012; Myers et al. 2014

® Does star formation depend on initial conditions and/or environment?
® Metallicity: Myers et al. 2011; Bate 2014
® Environment ?

® Most recent calculations have begun with small, dense molecular clouds (typical of Infrared
Dark Clouds, IRDCs)

® Bertram et al. 2015: Galactic centre environment
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How does the IMF depend on metallicity?

European Research Council

® Sub-solar metallicities

® Molecular gas generally hotter (less line-cooling and dust cooling)
® Jeans mass larger ( e )

® Characteristic stellar mass larger?

® Sub-solar metallicities
® Reduced opacity
® Collapsing gas optically thin and able to cool quickly at higher densities
® Jeans mass smaller (X 1/@ )

® Characteristic stellar mass smaller?
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Dependence of stellar properties on metallicity: Opacity

® Myers et al. (2011)

® Calculations with opacities ranging over a factor of 20, each producing ~40 stars
® No strong dependence of stellar mass function on opacity

® Bate (2014) repeated Bate (2012), but with opacities for 3 different
‘metallicities’
® Use opacities corresponding to metallicities Z=0.01 Zo 0.1 Zo ,Zo ,and 3 Z¢

® Does NOT take into account all of the effects of reduced metallicities
® Assumes dust cooling still dominates Four Different Opacities

® Breaks down as gas and dust temperatures decouple

Gas opacities from Ferguson et al. (2005)
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Each calculation produces 170 - 200 stars (733 total)

Opacity [cm?/g]

® Look for variation of mass function and multiplicity
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Dependence of stellar properties on opacity

® No significant dependence of any stellar property

® Despite varying opacity by a factor of 300

® |MFs consistent with Chabrier (2005)

® Multiplicity is a strong function of primary mass

® In good agreement with observational surveys
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Two types of thermodynamical calculation -

a=0.5

® Calculations of star cluster formation
® Ignore complicated physics of the diffuse ISM
® but include the radiative effects of protostars

® (e.g. Bate 2009-2014; Offner et al. 2009; Krumholz et al.
2010-2012; Myers et al. 2011-2014)

® Temperature accurate near protostars

Large-scales isothermal (set by boundary conditions)
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No distinction between gas and dust temperatures (only valid
>10° cm3)

o=2.0
n=1000 cm”

® Thermodynamical calculations of molecular clouds

Treat low-density thermochemical evolution of molecular
clouds in detail

log4o(Z /[g/ cm?])
log4o(Z / [g / cm?])

but exclude radiative feedback from protostars

3

(e.g. Glover et al. 2010-2012; Hocuk et al. 2015; _
Bertram, Glover et al. 2015) Bertram et al. (2015)
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Combining radiative transfer & a diffuse ISM mode

® Combining (Bate & Keto 2015) should allow more accurate models of star-
forming regions and the resulting stellar populations

® Gould-Belt star-forming regions (lower mean densities)
® Low metallicities (external radiation environment more important, weaker gas/dust coupling)

® Extreme environments (e.g. galactic centres, starburst, high-z)

Diffuse ISM model similar to Glover et al. (2007, 2010)

Separate gas, dust and radiation temperatures

Gas heating: cosmic rays, photoelectric

Gas cooling: recombination cooling, C+, Ol atomic lines, molecular lines (Goldsmith 2001)
Dust heating: assume equilibrium with radiation field (combined interstellar + protostellar)
Gas-dust collisional thermal coupling

BUT simple chemistry: carbon (CO, C° C*) and hydrogen (HI and H>)
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Mass function & multiplicity

® Preliminary results: calculation only run to 1.1 t# so far
® 104 stars and brown dwarfs

® Bate 2012 followed to 1.2 t (183 stars and brown dwarfs)

® Median mass in good agreement with Chabrier (2005) IMF
® Spread not quite as broad yet

® Multiplicities of solar-type stars currently higher than field

® Most are in high-order multiples that may be expected to evolve dynamically

Differential IMF Cumulative IMF Multiplicity vs Primary Mass

Diffuse ISM+RT
Bate (2012) t,=1.10
Bate (2012) t,=1.20
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Gas Temperature with Different Metallicities
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Dust Temperature with Different Metallicities
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Column Density with Different Metallicities
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HI with Different Metallicities
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C* with Different Metallicities
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CO with Different Metallicities
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Dependence of the mass function on metallicity™

® Preliminary results:

—

® 7/=0.17Z, 66 starsand BDs at 1.05 t
® 7=, 104 stars and BDs at 1.09 tg
® /=37, 106 stars and BDs at 1.01 ts
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® Median masses within factor ~2
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® Solar metallicity currently has the highest characteristic stellar mass

® Higher metallicity, greater extinction reduces gas temperatures & increases fragmentation

® Lower metallicity, low opacities allow greater cooling at high densities
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Conclusions

® Diffuse ISM model + radiative transfer will allow realistic calculations of
® Varying metallicities
® Lower-density molecular clouds (e.g. Taurus, Ophiuchus)

® Different environments (e.g. stronger interstellar radiation (ISR) fields)

® Stellar properties (IMF & multiplicity) highly insensitive to dust opacities

® Calculations investigating metallicity dependence underway
® Gas structure, composition, and temperatures do depend on metallicity

® So far, no strong dependence of protostellar mass function on metallicity




