The effects and extent of feedback on dense prestellar gas near proto-OB stars

> Adam Ginsburg ESO Fellow EPOS 2016 Thursday, June 30

W.M. Goss, Ciriaco Goddi, Roberto Galvan-Madrid, James Dale, John Bally, Cara Battersby, Allison Youngblood, Ravi Sankrit, Rowan Smith, Jeremy Darling, J.M. Diederik Kruijssen, Hauyu Baobab Liu Key points: Photoevaporative feedback is inefficient; gas *exhaustion* is the end state of massive protoclusters

> Protostars heat prestellar gas, main sequence stars don't

# What effect do OB stars have on the gas?

- Do massive stars stop star formation? When?
- (How) do nearby massive stars affect the initial conditions of star formation?

H<sub>2</sub>CO (high density) C<sup>18</sup>O (low density)

0.5 pc

Ku-Band (free-free) H<sub>2</sub>CO (high density) C<sup>18</sup>O (low density)

0.5 pc

★ Probable OB stars
Ku-Band (free-free)
H<sub>2</sub>CO (high density)
C<sup>18</sup>O (low density)

0.5 pc



### $L \sim 10^7 L_0$ M\*~few 10<sup>3</sup> M<sub>0</sub>

Free-free: Ginsburg et al 2016



### H<sub>2</sub>CO core: W51 North

(Henkel et al 2013, Goddi et al 2015: NH3 masers)

 $\label{eq:L2} \begin{array}{l} L \sim 10^7 \ L_{\rm O} \\ M^* \sim few \ 10^3 \ M_{\rm O} \\ M_g \sim few \ 10^3 \ M_{\rm O} \end{array}$ 

Free-free: Ginsburg et al 2016



H<sub>2</sub>CO core: W51 North

 $L \sim 10^7 L_0$ M\*~few 10<sup>3</sup> M<sub>0</sub> M<sub>g</sub>~few 10<sup>3</sup> M<sub>0</sub>

> NACO K-band (Figuerêdo et al 2008)



H<sub>2</sub>CO core: W51 North

 $L \sim 10^7 L_0$ M\*~few 10<sup>3</sup> M<sub>0</sub> M<sub>g</sub>~few 10<sup>3</sup> M<sub>0</sub>

> NACO K-band (Figuerêdo et al 2008)



### Photoevaporative Feedback in IRS2









Ionization-driven mass loss rate <<10<sup>3</sup> M $_{\odot}$  Myr<sup>-1</sup> n>10<sup>4</sup> cm<sup>-3</sup> -> t<sub>ff</sub> < 0.5 Myr Evaporation timescale t<sub>ev</sub> > 5-10 t<sub>ff</sub> SFR > ionization mass loss

Gas exhaustion, not expulsion, will end star formation in IRS2 (e.g., Kruijssen et al 2012)

#### Stellar thermal feedback is critical for setting the IMF



### Gas heating: Thermal (radiative) feedback changes initial collapse conditions

 $\begin{array}{c} H_2CO \ 3_{0,3} - 2_{0,2} \\ H_2CO \ 3_{2,1} - 2_{2,0} \\ H_2CO \ 3_{2,2} - 2_{2,1} \end{array}$ 

H<sub>2</sub>CO thermometry: redder = cooler (maybe)

 $\begin{array}{c} H_2CO \ 3_{0,3} - 2_{0,2} \\ H_2CO \ 3_{2,1} - 2_{2,0} \\ H_2CO \ 3_{2,2} - 2_{2,1} \end{array}$ 



Ginsburg et al 2016 APEX CMZ survey



### ALMA molecule maps: Multi-layered chemically enriched zones



5"





"Core" temperature in







CH<sub>3</sub>OH does not trace outflows: methanol enhancement is circularly symmetric

CO / CO CH<sub>3</sub>OH 8<sub>0,8</sub>-7<sub>1,6</sub>

# Chemical Maps: North



## W51 North: similar heating

 $CH_3OH$ 

#### 5000 au / 0.025 pc

W51 North: similar heating

CH<sub>3</sub>OH 0

Ionizing radiation is destroying the outer envelope?



# Chemical Maps: e8



### W51 e8: again, similar heating



W51 e8: again, similar heating

No sign of excess warm gas near HII regions





Only the most massive cores produce ~0.1 pc-scale extreme heating Photoevaporation is ineffective at halting star formation on clump scales

It is important for shaping the cloud and limiting the growth of a forming cluster

Protostars heat prestellar gas, (maybe suppressing fragmentation) main sequence stars & HII regions apparently do not

### BONUS SLIDES START HERE



MOXC X-ray sources (young stars)



MOXC X-ray sources (young stars)

MOXC X-ray source density



MOXC X-ray sources (young stars)

MOXC X-ray source density

ALMA mm sources (cores, protostars)



MOXC X-ray source density

ALMA mm sources (cores, protostars)



MOXC X-ray source density

ALMA mm sources (cores, protostars)

EVLA cm sources (CWBs, HCHIIs)



### **CWB** candidates

Faint (<mJy), compact, flat-spectrum radio sources Some with X-ray counterparts

Candidate powering sources for the W51 Main HII region bubble



### Feedback around forming MYSOs

- Outflows
- Infrared Radiation
- Ionizing Radiation

![](_page_47_Figure_0.jpeg)

# 12**CO** ALMA 1mm Cores ~170K Goddi, Ginsburg, Zhang 2016

+14°30'36.0" 35.5" 36.0" 34.5" 34.0" 33.5" 33.0" 5000 au / 0.025 pc 19h23m44.05s44.00s 43.95s 43.90s 43.85s RA (J2000)

Dec (J2000)

0.1 pc

![](_page_48_Figure_2.jpeg)

3m44.60s44.40s 44.20s 44.00s 43.80s 43.60s 43.40s 43.20s RA (J2000)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

### Stars form near other stars

How do (nearby) massive stars affect the initial conditions of star formation?

![](_page_53_Picture_1.jpeg)

Goddi, Ginsburg, Zhang ALMA long baseline

![](_page_54_Figure_1.jpeg)

#### ALMA 1 mm

Goddi, Ginsburg, Zhang ALMA long baseline

![](_page_55_Figure_0.jpeg)