Magnetic Fields from Cloud Fragmentation to Disks

Shantanu Basu

Western University, London, Ontario, Canada

EPoS 2014 Ringberg Castle, Germany June 4, 2014

Key roles of interstellar B

- Low star formation efficiency by preventing SF in subcritical envelopes
- Maintaining (MHD) turbulence
- Filament formation
- Influencing core mass function
- Launching outflows
- Regulating star-disk interaction/accretion
- Providing fossil magnetic field to (at least) early type stars

Today's key takeaway

Key takeaways about B

- Recent observations reveal a connection between large and small scales. This supports the strong magnetic field scenario
- Filaments in molecular clouds have a LOT to do with magnetic fields
- Hourglass fields connect large and small scales. Observers see them, theorists fear them
- Disk formation is adventurous with *B*

A Magnetized Fluid

Most MC mass in low density envelope

Taurus - low SFE and magnetic striations

(000)

Pipe Nebula

More evidence of cloud formation by flow or contraction along *B*.

See posters on polarimetry:

Poster 10 – Josep Girart: Magnetic Fields in Massive Star Forming Regions

Poster 13 – Chat Hull: Multi Scale View of Magnetized Star Formation

A two state system?

H-B Li et al. (2013)

Magnetic field invariably either perpendicular or parallel to filament.

See posters on magnetized filaments:

Poster 15 – Eric Keto: Filaments by reconnection in magnetized sheets

Next talk + Poster 31 – Kohji Tomisaka: MHS equilibria of Filamentary Cloud with Lateral Magnetic Field

Zeeman measurements B_{los}

R Crutcher RM. 2012. Annu. Rev. Astron. Astrophys. 50:29–63

B-dominated scenario for low SFE

Supercritical highdensity regions assembled by large scale flows/turbulence Subcritical common envelope

cf. Nakamura & Li (2005), Elmegreen (2007), Kudoh & Basu (2008, 2011), Nakamura & Li (2008), Basu , Ciolek, Dapp, & Wurster (2009; model shown above).

Late phase: collapse \rightarrow outflow/jet

Machida et al. (2006, 2007)

See Poster 13 – Chat Hull: Multi Scale View of Magnetized Star Formation for polarimetry of outflow regions

Even later: Star-Disk Phase

Stellar/disk wind/jet

Shu et al. (1994)

also Uchida & Shibata 1985 Camenzind 1990 Konigl 1991 Lovelace et al. 1995 Magnetospheric accretion

Talks by H. Arce, C. Fendt. See also poster 06 – Turlough Downes : MRI in weakly ionized disks

Maintaining Turbulent Energy

Wang, Li, Abel, & Nakamura (2010)

Mass accretion onto sink particles reduced significantly when both magnetic field and outflow driving are present.

Subcritical turbulent cloud with fluxfreezing

Initially turbulent $(v_k^2 \sim k^{-4})$ thin disk model. Magnetic field perpendicular to layer. Supersonic motions continue without local collapse.

$$\mu_0 \equiv 2\pi G^{1/2} \frac{\Sigma_0}{B_0}$$
$$= 0.5$$

Animation (not available in pdf version)

Basu & Dapp (2010, ApJ, 716, 427)

Magnetic Fields, Ambipolar Diffusion, and a modified Jeans mass

Periodic isothermal thin-sheet model. Initial small amplitude perturbations. *B* is initially normal to sheet. Ambipolar diffusion is active.

Column density and velocity vectors (unit 0.5 c_s) Note sensitivity to magnetic field strength and super-Jeans transcritical fragmentation.

Subcritical Fragmentation

- Direct fragmentation due to ambipolar diffusion from a decidedly subcritical common envelope
- Protocores are still subcritical
- Collapsing cores are already supercritical
- Gestation time and age spread can be ~ 10⁷ yr for typical ionization fraction
- No direct observational evidence of this mode so far (Crutcher, Hakobian, & Troland 2009), i.e., a subcritical intercore medium

Basu, Ciolek & Wurster (2009)

Other paths in *B*-dominated scenario

Supercritical highdensity regions assembled by large scale flows/turbulence Subcritical common envelope

cf. Nakamura & Li (2005), Elmegreen (2007), Kudoh & Basu (2008, 2011), Nakamura & Li (2008), Basu , Ciolek, Dapp, & Wurster (2009; model shown above).

Transcritical Fragmentation

Flows along field lines build up molecular cloud. Region that becomes transcritical is first to fragment on a reasonably short timescale. Initial fragment is pc scale clump. As ionization fraction drops, fragmentation scale drops and continued small amplitude perturbations lead to a second stage of fragmentation.

Turbulence Accelerated Star Formation

Thin disk approximation

Li & Nakamura (2004)

subcritical ($\mu_0 = 0.83$) model

 $v_k^2 \sim k^{-4}$ spectrum

Note filamentarity of column density.

TASF Simplified – Filament Formation

Capture essence of TASF and filament formation by introducing 1D flow in x-y plane. Subcritical initial condition and Mach 5 flow. Animation (not visible in pdf version).

 B_0 in z-direction. Time unit = 2.5×10^5 yr.

$$\tau_{AD} \simeq \frac{1}{3} \tau_{AD,0} \simeq \frac{1}{3} \frac{\tau_{ff}^2}{\tau_{ni}}$$

when $v_{flow} = v_{A,0}$

flow

Kudoh & Basu (2014, submitted)

Local hourglass B-field

080C (J2000

Smooth hourglass from **either subcritical fragmentation or mildly supercritical fragmentation** with low turbulence. Degree of curvature can reveal background mass-to-flux ratio (Basu et al. 2009, NewA, 14, 221) See Poster 10 – Josep Girart: Magnetic Fields in Massive Star Forming Regions

NGC 1333 IRAS 4A, Girart et al. (2006)

Hourglass Patterns Carry Information

Scheluning (1998) pc scale clump

0.1 pc scale globule

Both OMC 1 and B68 have enough curvature to imply mildly supercritical contraction. NGC 1333 IRAS 4A, Gonçalves, Galli, & Girart (2008). Data red, model blue. Small pinch at this scale not consistent with flux freezing. Model allows resistivity estimate.

Scale is 100s AU

arcsec

-2

B68, image courtesy R. Kandori

Analytic Hourglass Model

Ewertowski & Basu (2013, ApJ, 767, 33)

Catastrophic Magnetic Braking

A connection of small scales to large scales!

Allen, Li, & Shu (2003) first pointed this out. Subsequently shown by Galli et al. (2006) Mellon & Li (2008) Hennebelle & Fromang (2008) and others. In protostellar phase (but not prestellar phase), fluxfrozen and extremely flared magnetic field with large lever arm leads to extreme angular momentum loss → no centrifugal disk is formed!

Chemistry \rightarrow Ionization balance

Detailed chemical network with at least nine charged species including grains and the effects of radiative and dissociative recombination of ions and electrons, charge exchange b/w atomic and molecular ions, adsorption of charge onto grains, and charge exchange b/w grains. Ionization sources are:

- 1. UV ionization
- 2. cosmic ray ionization
- ionization due to radiation
 liberated in radioactive
 decay
- 4. thermal ionization through collisions

Kunz & Mouschovias (2009, ApJ, 693, 1895), Dapp, Basu, & Kunz (2012, A&A, 541, A35)

Effective (total) diffusion coefficient

Figure from Dapp, Basu, & Kunz (2012, A&A, 541, A35)

Magnetic Fields during Core Collapse

Dashed lines are for flux-frozen model (extreme flaring of FL's leads to braking catastrophe). **Solid lines** are for non-ideal MHD model (note relaxation of FL shapes within 10 AU).

Dapp, Basu, and Kunz (2012) employ thin-disk approximation, detailed chemical network for partial ionization and non-ideal MHD coefficients, and resolve second core in radial direction.

Disk formation

 introduction of sink cell after 2nd core formation (few R_{sun}) centrifugal balance is achieved, and disk fragments into ring

Small Class 0 disks?

- Resolution of CMB with classical resistivity alone will result in a small AU scale initial disk
- If this small "initial" disk is also massive (M_{disk, init} ~ 0.1 M_{star}) it will expand in size as it becomes a lower mass disk.

$$R_{disk, final} \simeq R_{disk, initial} \left(\frac{M_{disk, init}}{M_{disk, final}} \right)^2$$
 if angular momentum conserved

 For R_{disk, initial} ~ 3 AU, could end up with R_{disk,final} ~ 300 AU for "final" disk mass to star mass ratio M_{disk,final}/M_{star} ~ 0.01

Small Class 0 disks? v2

- A study of 5 class 0 objects down to a ~ 50 AU finds no evidence for disks down to this scale (Maury et al. 2010)
- Large (~ 100 AU) Keplerian disks found around L1527 IRS (Tobin et al. 2012) and VLA 1623A (Murillo et al. 2013). Only two known class 0 disks to date.

Keplerian motions in L1527 IRS, Tobin et al. (2012)

Possible resolutions to CMB

- Classical resistivity: implies small initial disk (Dapp et al. 2012)
- Misalignment of magnetic axis and rotation axis (Hennebelle & Ciardi 2009; Joos, Hennebelle & Ciardi 2012)
- Depletion of core envelope matter shuts down magnetic braking (Machida et al. 2011)
- Interchange instability redistributes flux (Krasnopolsky et al. 2012)
- Turbulence in core breaks coherence of magnetic field (Seifried et al. 2013; Santos-Lima et al. 2013)

Zhi-Yun Li 's talk on Thursday will address many of these and other ideas.

Images: Braithwaite (2012)

Resistivity: fine tuning needed?

- Great enough to allow disk formation
- Small enough to allow outflow launching
- Small enough at very late stage to allow for pinched configuration and detachment of field lines

Conclusions

There is likely no unique value for mass-to-flux ratio in ISM, however:

- Zeeman and **especially** polarimetry data from ISM to molecular clouds yield evidence for subcritical molecular cloud envelope
- Core formation may be within transcritical clumps/filaments created by flows or turbulence rather than by direct growth from subcritical envelope
- Degree of pinching in hourglass patterns carries extractable information about physical conditions
- Extreme hourglass field leads to catastrophic magnetic braking (CMB). Nonideal MHD resolves this problem on AU scales
- Size of disk in class 0 phase predicted to be very small for aligned rotator.
 Other situations may allow for larger young disk
- Cloud magnetic field remains crucial at later stages for outflow driving, turbulent energy transport, disk accretion, and supplying a fossil field to stars