Prelude to Star Formation: The Mass-to-Flux Ratio in Galactic GMCs

T. H. Troland University of Kentucky, USA Ringberg, June 17, 2010

Principal collaborators

Kristen Thompson (University of Kentucky, USA)

Carl Heiles (Berkeley, USA)

1. Magnetic Field Basics – Flux Freezing

• Ions in the ISM directly coupled to magnetic field B_{ISM} via the *Lorentz force*.

 Neutrals coupled to ions via *ion-neutral collisions* as long as fractional ionization f_{ion} not too low¹.

Coupling of ISM to B_{ISM} called *flux freezing*

¹Starlight ionization of C atoms is sufficient to maintain good coupling

1. Magnetic Field Basics – Flux Freezing

• Effects of flux freezing $-B_{ISM}$ supplies support to selfgravitating cloud (in addition to internal motions)

Shu, The Physical Universe (1982)

If B is strong enough, it can prevent gravitational collapse.

How strong is strong enough?

◆ Set magnetic energy ≈ gravitational energy

$$\pi R^3 \left(\frac{B^2}{8\pi}\right) \approx \frac{GM^2}{R}$$

(to within factors ≈ 1)

• Since magnetic flux $\Phi \approx \pi R^2 B$, this relation reduces by simple algebra to

$$\left(\frac{M}{\Phi}\right)_{crit} \approx \left(\frac{1}{8\pi G}\right)^{1/2}$$

• This is the *critical mass-to-flux ratio* $(M/\Phi)_{crit}$.

 $\diamond \lambda$ parameter* defined as follows:

$$\lambda \equiv \frac{\left(M / \Phi\right)}{\left(M / \Phi\right)_{critical}}$$

- $\lambda > 1$ magnetically *supercritical*
- $\lambda < 1$ magnetically *subcritical*

*Sometimes called μ

$\lambda > 1$ (magnetically supercritical)

- Gravitational energy > magnetic energy
- Self-gravitating cloud *cannot* be supported by *B alone*.

$\lambda < 1$ (magnetically subcritical)

- Magnetic energy > gravitational energy
- B supports the cloud regardless of external pressure.

recall
$$\lambda \equiv \frac{(M / \Phi)}{(M / \Phi)_{critical}}$$

$\diamond \lambda$ can *increase* if

- External mass accumulates onto cloud along field lines

$\diamond \lambda$ can *increase* if

 Neutrals diffuse gravitationally through ions toward center of cloud - *ambipolar diffusion**.

*High A_v in cloud core suppresses starlight ionization, reduces f_{ion} .

- A theoretical argument Self-gravitating clouds should be mildly magnetically *supercritcal* (e.g. McKee & Ostriker 2007)
 - If gravity strong enough to overcome both *B* (turbulent & ordered) *and* internal motions, gravity should be stronger than *B* alone.

Observationally

$$\lambda = \frac{\left(M / \Phi\right)}{\left(M / \Phi\right)_{critical}} \approx 5.0 \times 10^{-21} \frac{N(H)}{B} \qquad \frac{cm^{-2}}{\mu G}$$

where N(H) is the *proton* column density

3. The Zeeman effect

Radio frequency Zeeman effect is only technique that measures field strengths directly in *localized regions* of ISM.

Limitations

 Only feasible for spectral lines from atoms or molecules with *unpaired electrons* (e.g. H⁰, OH, CN).

– Yields *line-of-sight* magnetic field *B*_{los} only, *not* total *B*

- Requires very high sensitivity (long integration times)

4. Existing measurements of λ

$\diamond B_{los}$ measured via Zeeman effect in two regimes:

– Diffuse HI gas (CNM) - via 21 cm HI Zeeman effect

 Molecular cores - via 18 cm OH & 2.8 mm CN Zeeman effect

4. Existing measurements of λ

 $\diamond N(H)$ estimated from Zeeman-sensitive spectral line.

For OH & CN Zeeman effects, one must adopt values for OH/H₂ and CN/H_2 .

Molecular cores

(supercritical)

5. Importance of λ in GMCs

• Most of volume of GMCs filled with low density gas $(n \approx 10^2 \text{ cm}^{-3}).$

No existing Zeeman measurements sample general lines-of-sight through GMCs (i.e. not through cores).

So we do not know observationally if GMCs are magnetically sub or super critical as a whole.

5. Importance of λ in GMCs

Theoretical arguments suggest GMCs are supercritical *if they are gravitationally bound*.

However, GMCs may not be gravitationally bound if there were formed by (e.g.) colliding flows.

The only way to know λ_{GMC} – Zeeman effect observations

5. Importance of λ in GMCs

For a typical GMC:

 $-N(H) \approx 1.5 \times 10^{22} \text{ cm}^{-2}$ (corresponds to Av ≈ 6)

Choose extra-galactic continuum sources behind galactic GMCs

- Search for Zeeman effect in 18 cm (1665, 1667 MHz) OH absorption lines towards these sources.
- Lines-of-sight sample GMCs as a whole, not just molecular cores.

After 80 hours of integration time (so far) we have observed OH absorption toward:

-4 sources in galactic center region ($I \approx 30-70^{\circ}$)

-3 sources in galactic anti-center region ($I \approx 160-200^{\circ}$)

Between 2 and 20 hours of integration time per source

PKS 1944+251 – Stokes I (RH + LH circular pols)

1667 MHz line

PKS 1944+251 – Stokes V (RH – LH circular pols)

Table of *preliminary* results (anti-center sources)

Source	l	b	<i>N</i> (H ₂)	$B_{\rm los}\mu{ m G}$	$\sigma(B_{los})$	λ
3C092	159.7	-18.4	1.0×10^{22}	15	13	7
3C131	171.4	-7.8	5.2×10^{21}	0.9	4.9	57
4C+14.18	197.0	1.10	1.8 × 10 ²¹	1.1	9.0	17

Table of *preliminary* results (galactic center sources)

Source	l	b	<i>N</i> (H ₂)	$B_{\rm los}\mu{ m G}$	$\sigma(B_{los})$	λ
4C+13.67	43.5	9.2	4.3×10^{21}	-23	31	2*
B1853+0749	40.5	2.5	2.1×10^{22}	-16	9.8	13
			6.9 × 10 ²²	-13	5.6	52
			5.1×10^{21}	-8.5	7.8	6

*Short (2 hour) integration time

Table of *preliminary* results (galactic center sources)

Source	l	b	<i>N</i> (H ₂)	$B_{\rm los}\mu{ m G}$	$\sigma(B_{los})$	λ
B1858+0407	37.8	-0.2	1.2×10^{23}	14	5.2	85
			7.6 × 10 ²¹	4.1	5.7	18
			8.8 × 10 ²¹	-5.4	6.6	16
PKS1944 +251	61.5	0.1	1.7×10^{23}	-54	1.5	31

New results from Arecibo GMC project

All results (new results in red)

• Significance – GMCs appear to be magnetically supercritical ($\lambda >> 1$)

• However λ may be smaller if

- $-T_{ex}$ (OH) smaller than assumed 30 K
- $-N(OH) / N(H_2)$ larger than the value for dark clouds

 $-B_{tot} >> B_{los}$ (i.e. unfavorable geometry for Zeeman effect)