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Motte et al. 

Dense material has different properties than bulk cloud. 
No requirement for significant non-thermal support. 

 What We Think We Know About Cores …  
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 1) Consider the Pre-Stellar Core … 

M,R,T,σNT 
(single dish observations) 

M(r),T(r),σNT(r) 
(Interferometer observations) 

Is this a reasonable model?  
Are pre-stellar cores simple or complex? 

α ~ importance of self-gravity 
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Search for Substructure in 11 Perseus Starless Cores 
with an interferometer, we only detected two cores and no multiples   

CARMA	  D+E	  array	  7-‐point	  mosaics	  &	  SZA	  single	  poin<ng	  	  

(Schnee	  et	  al.	  accepted	  to	  ApJ)	  
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Modeling the density profile   
n(r)	  =	  n0/[1	  +	  (r/r0)α]	  

(Schnee	  et	  al.	  accepted	  to	  ApJ)	  
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Search for Fragmentation Reveals Little Substructure   

(Schnee	  et	  al.	  accepted	  to	  ApJ)	  



Page  7 

 2) Consider the Pre-Stellar Core Again… 

M,R,T,σNT 
(single dish observations) 

But, shouldn’t the environment determine the core properties?!? 



Page  8 

 An Enlightening Example … 

Sensitivity limit -Surface Density 

Constant density 
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 An Enlightening Example … 
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 An Enlightening Example …  
Padoan & Nordlund simulation 
(turbulence with self-gravity) 

•  mach 9 turbulence, with many 
initial Jeans masses 

•  observed density barrier due to 
ram pressure from turbulence 

• ρmax ~ M2 ρinit ~ 80 ρinit 

•  requirement of observational 
high spatial and dynamic range 

• Herschel! 

 Note: this analysis only reveals that the environment  can set core conditions 
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 3) Consider the Pre-Stellar Core Again… 

M,R,T,σNT 
(single dish observations) 

But, shouldn’t gravitationally unstable cores collapse? 
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Dense cores appear highly correlated with star formation. 
Dense core formation relatively quick and efficient. 

 How are Cores and Star Formation Related? 
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Initial Determination of Starless Cores in JCMT Legacy Catalogue  

Sadavoy, Di Francesco, 
et al. 2010  
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Careful re-analysis of the 17 most ‘unstable’ pre-stellar cores.  

Sadavoy, Di Francesco, Johnstone 2010  
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Most are ambiguous, only three excellent pre-stellar candidates. 

Sadavoy, Di Francesco, Johnstone 2010  



Page  16 

  4) Consider the Pre-Stellar Core …   (Yet Again) 

M,R,T,σNT 
(single dish observations) 

Transition Zone: Structure, 
Chemistry, and Kinematics! How is the pre-stellar 

core assmbled? 
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 How are Cores and Cloud Related? 



Page  18 

 Observational technique: 

N2H+ 

C18O 
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C180 and N2H+ have quite similar line centroids!! 

Kirk, Johnstone, Tafalla 
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 5) Consider the Pre-Stellar Core One Last Time 

M,R,T,σNT 
(single dish observations) 

Do all dense gas tracers tell the same story? 
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 How reliable are the dense gas tracers? 

NH3 is an excellent temperature probe 
•  TK ~ 11 K for all Perseus cores 

 (Rosolowsky et al. 2009) 

(Johnstone, Rosolowsky, Tafalla, Kirk 2010)  
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 How reliable are the dense gas tracers? 
Kinematics: 
(37 protostellar cores) (37 prestellar cores) 

N2H+ and NH3 have identical kinematic 
Signatures, unlike C18O [despite NH3(1,1) 
and C18O 2-1 having similar critical density]. 
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 How reliable are the dense gas tracers? 
Abundances: (37 protostellar cores) (37 prestellar cores) 

N2H+ and p-NH3 show a 
constant abundance ratio of 
~ 20, for both prestellar and 
protostellar cores. 

The abundance of the 
nitrogen-bearing species 
compared with H2 appears  
to be lower within the 
highest column density 
protostellar cores. 

Chemical evolution as a 
physical diagnostic? Clock?  
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Summary and Discussion Points: 
1.  Observed Pre-Stellar Cores appear smooth and devoid of significant sub-structure  

•  Does this imply a quiescent phase between assembly and collapse? 

•  When does binary formation take place? 

2.  Pre-Stellar Cores physical properties should be determined by their environment 
•  Can we use this information to infer molecular cloud conditions? 

•  Should this not also work for the filaments seen by Herschel 

3.  Are there really lots of Pre-Stellar Cores with mass greater than Jeans? 
•  All ‘observed’ objects should be studied very carefully (e.g. infall!) – interesting physics 

•  How do ‘massive pre-stellar cores’ connect with our low-mass environment notions? 

4.  Pre-Stellar Cores and the Clump kinematics are well coupled 
•  Is this a useful constraint for the theories of core formation? 

5.  Dense Gas Tracers are not all alike … 
•  NH3 and N2H+ show very similar kinematics and abundance ratios – chemistry? 

•  The molecules and the dust on the other hand can differ greatly – who’s right? 
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 Environmental Surveys Provide … 

Context for understanding low-mass core observations. 

And, all reasonable theories must reproduce each of these conditions! 
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SCUBA Observations 
• Submillimetre cont’m 
• Thermal emission 

• Optically thin 
• 15 arcsecond res. 

• ~3000 AU 
• Column density proxy 

• Av ~ 10 - 1000’s 
• NH ~ 1022-24 cm-2 

Johnstone, Kirk, Di Francesco. 

Johnstone et al. 

Kirk, Johnstone, Di Francesco 
See also Hatchell et al. 
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Extinction threshold 
Extinction 
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Extinction threshold 
Sub-mm 
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Perseus 

Ophiuchus 

 Core  

Core 
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Significance of these Core Observations? 
Cores represent ~2% mass of cloud 

Cores represent ~20% mass of clump 

Cores live primarily at high (>10) Av 

Cores have stellar IMF-like mass f’n 

Embedded stellar clusters have these same properties! 

(Lada and Lada 2003) 
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Coincidence of 24 Micron source and Submm peak.  

data random 

Protostars clustered around and within dense cores. 

Jorgensen, Johnstone, Kirk, Myers 2007 
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Correlation between protostars and core properties.  

Perseus Perseus 

Brightest/most peaked sources contain protostars. 
Does this negate the IMF-like core mass distribution? 

Jorgensen, Johnstone, Kirk, Myers 
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Protostars in cores live near the core center.  
Jorgensen, Johnstone, Kirk, Myers 

R < 10 arcseconds! 
R < 2000 AU 

For 0.1 km/s 
   τ =105 yrs 
     ~lifetime of  

 embedded  
 protostar 

Protostars do not appear to 
be moving with respect to 
the core. 

Perseus 



Page  37 

IRAM Observations 
• N2H+ and C18O 
• 15 arcsecond resolution (~3000 AU) 
• N2H+ a proxy for dense gas 

89 SCUBA dense cores  

44 Palomar plates 

24 2MASS extinction 

84% detection rate  

42% 

14% 

(Kirk, Johnstone, Tafalla 2007)  
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N2H+ linewidths of cores dominated by thermal motion! 
Kirk, Johnstone, Tafalla 
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C180 linewidths towards cores are non-thermal. 

Kirk, Johnstone, Tafalla 
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 Cores and Their Environments 
  On large scales, clouds exhibit supersonic turbulent motions 
  On the smallest scales, dense cores have mostly thermal motions 
  Time to compare the observations with simulations! 

cloud (10 pc) 
extinction 
region (1pc) 

CO envelope 
(0.1pc) 
dense core 
(0.01 pc) 

(Kirk, Johnstone, Basu 2009)  
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LOS Velocity dispersion. 

Comparison between the 
region’s total velocity 
dispersion and individual 
lines of sight. 

Kirk, Johnstone, Basu 

(Kirk, Johnstone, Basu 2009)  

Large linewidths observed in 
clouds not simply bulk motion. 
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Kirk, Johnstone, Basu 
Core Velocity Dispersion. 

The velocity dispersion 
within individual cores. 

(Kirk, Johnstone, Basu 2009)  

Almost all simulations show this 
behaviour. Dense cores form 
where gas has lost its non-thermal 
support (if not, they’d be extremely 
over-pressured). 
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Kirk, Johnstone, Basu 
Core Versus LOS motion. 

Comparison between the 
velocity centroid of the 
core and the bulk gas 
along the line of sight. 

(Kirk, Johnstone, Basu 2009)  

Present simulations have real 
trouble with this diagnostic! 
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Two theorist’s ideas about core environments. 

Gravo-Turb (dynamic) Magnetic Fields (slow) 

Basu Bate M. Bate 
S. Basu 
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Structure :The Need for Resolution! 
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Structure :The Need for Resolution! 
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NRC - HIA (Canada)  
Band 3 Receiver (3 mm) 

Specifications: 
•  84-116 GHz 

• CO (1-0), N2H+ 

•  8 GHz bandwidth 
•  T < 17 K 
•  always on! 
• Primary bm ~ 60’’ 
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 An Observational Example … (Herschel should do better!)  

(constant density) 

Ophiuchus, observed with SCUBA at the JCMT (Johnstone et al.) 

Jeans Mass 


