Radiative MHD in Massive Star Formation and Accretion Disks

Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning

IAUS 259, Tenerife, November, 04. 2008
Radiative MHD with “Makemake” and “Pluto”:

We developed a fast 3D frequency-dependent radiation transport module, called Makemake [7], and implemented it successfully with the freely available MHD-code Pluto [6].

Features of Makemake:

- Geometries: Cartesian, Cylindrical and Spherical coordinates in 1, 2 and 3D.
- Gray (opacity-averaged) Flux-Limited Diffusion approximation
 + Frequency-dependent Irradiation (1st order Ray-tracing).
- MPI-parallelized modern GMRES-solver using the PETSc-library [3].

Performance of Makemake:

- CPU-time comparable or even faster than hydro step (compared with an accretion disk setup in Pluto).
- Parallel speedup higher than hydro-solver.
- Accuracy for a single object source (setup adopted from the Pascucci Radiation Benchmark Test [4]) comparable to full frequency-dependent Monte-Carlo radiative transfer method (but incredible faster than MC!).

References:

Radiative MHD with “Makemake” and “Pluto”:

Results of the comparison of Makemake with the Monte-Carlo based radiative transfer code RADMC [5].

- Accuracy for a single object source (setup adopted from the Pascucci Radiation Benchmark Test [4]) comparable to full frequency-dependent Monte-Carlo radiative transfer method (but incredible faster than MC!).

References:
Application I: Massive Star Formation

Setup (adopted from Yorke & Sonnhalter 2002):

- Massive core with outer Radius = 0.1 pc.
- Total Mass = 60 \(M_{\text{sol}} \).
- Density drops with \(r^{-2} \).
- Temperature = 20 K.
- Initial Angular Momentum = 0 (1D) or \(5 \times 10^{-13} \) Hz (2D).

Included Physics (in different runs):

- Isothermal.
- Adiabatic.
- Diffuse cooling (infrared dust emission).
- Irradiation feedback from central star.
- Radiation pressure feedback from central star.
- Frequency-dependent irradiation and radiation pressure.
Application I: Massive Star Formation

Results 1D:

- Frequency-dependent radiation pressure limits the final stellar mass to \(\sim 30M_{\text{sol}} \) (~50% \(M_{\text{tot}} \)).

\[
\begin{align*}
M_{\text{star}} \ [M_{\text{sol}}] & \quad \text{Isothermal} \\
\text{Time [1000 years]} & \quad \text{Frequency-dependent Radiation Pressure}
\end{align*}
\]
Application I: Massive Star Formation

Results 2D:

- Due to angular momentum conservation the adiabatic collapse forms a several 100 AU torus as well as polar cavities.
- The prior free-fall era leads to a $10 \, M_\odot$ star.
- Further accretion is only possible via gravitational, radiative or magnetic instabilities.

Both panels:
- Left color = Radial Velocity (blue Infall, red Outflow)
- Left contour = Density (log)
- Right color = Density (log)
- Right contour = Temperature (log)
Application I: Massive Star Formation

Next steps:
- Frequency-dependent 2D runs.
- 3D simulations of Gravitational Instabilities in the resulting disk/torus.
- 3D simulations of developing MRI in the resulting disk.

See also “Application II”.

Both panels:
Left color = Radial Velocity (blue Infall, red Outflow)
Left contour = Density (log)
Right color = Density (log)
Right contour = Temperature (log)
Application II: MRI in accretion disks

Setup:
- Proto-planetary disk in hydrostatic equilibrium.
- Toroidal magnetic field with constant plasma beta about 25.
- A small random velocity seed drives to MRI.
- Radial boundary: Perfect conductive massive plate.
- Vertical and azimuthal boundary: Periodic.

Code and configuration:
- Pluto 3.0 with
 - Second order Godunov scheme (hlld)
 - Upwind constraint transport (ct) - Consistent electromotive force reconstruction (emf)
Application II: MRI in accretion disks

Results:

- Within the first 100 inner orbits a highly magnetized corona is forming (plasma beta < 1), while the midplane of the disk remains at large plasma beta values susceptible for the MRI (see azimuthal averaged plasma beta in Figure II.1).

Figure II.1: Logarithmic plasma beta for 100x25x25 (left), 200x50x50 (middle) and 400x100x100 (right) after 10 orbits (at 5 [AU]) in turbulent state.
Application II: MRI in accretion disks

Results:

- Within the first 100 inner orbits a highly magnetized corona is forming (plasma beta < 1), while the midplane of the disk remains at large plasma beta values susceptible for the MRI (see azimuthal averaged plasma beta in Figure II.1).
- For all studied resolutions the turbulence converges against an alpha value about 0.01 (see Figure II.2).

![Figure II.1: Logarithmic plasma beta orbits (at 5 [AU]) in turbulent state.](image1)

![Figure II.2: Maxwell-Stress evolution for three diff. Resolutions. The values converge against each other.](image2)
Application II: MRI in accretion disks

Next steps:

- First MRI-runs including Makemake radiative transfer are currently performed on our cluster.
- Non-Ideal Radiative MHD with temperature-dependent dynamical resistivity.

Figure II.1: Logarithmic plasma beta (at 5 [AU]) in turbulent state.

Figure II.2: Maxwell-Stress evolution for three different resolutions. The values converge against each other.
Interested?

For more details about our projects, access to our code, hints or remarks of any kind:

- Visit www.mpi.a.de/~kuiper → Research → Radiative Transfer for MHD.
- Mail to kuiper@mpia.de.
- Ask me during these days!
Interested?

For more details about our projects, access to our code, hints or remarks of any kind:

- Visit www.mpi.a.de/~kuiper → Research → Radiative Transfer for MHD.
- Mail to kuiper@mpia.de.
- Ask me during these days!

Thanks for your attention
and
enjoy your stay!