Molecular Hydrogen in High Redshift Damped Lyman alpha Systems (DLAs)

Regina Jorgenson NSF Astronomy & Astrophysics Postdoctoral Fellow IfA, Hawaii

in collaboration with: Michael Murphy (Swinburne) Rodger Thompson (Arizona) Bob Carswell (Cambridge)

Typical Quasar Spectrum

Quasar

 ~ 1 in 3 quasars contains a DLA

o earth

Typical Quasar Spectrum

DLA Basics

- Damped Lyman alpha Systems (DLAs) are quasar absorption line systems with:
 - N(HI) $\ge 2 \times 10^{20} \text{ cm}^{-2}$
 - Gas is primarily neutral
 - Crucial for star formation

DLA Basics

- Detected from *z* ~ [0,5] and known to dominate the neutral gas content of the U over this redshift range.
 - >1000 DLAs found in SDSS
- Identified as absorption systems \Rightarrow no luminosity bias
 - Only probe of normal (not high mass/luminosity) galaxies at high redshift
- Gas content of DLAs at *z*~[3,4] is approximately equal to the amount of matter in stars today
 - DLAs serve as important neutral gas reservoirs for star formation

Question

• Is this neutral gas turning into stars?

Evidence for star formation in DLAs?

1) DLA metallicities are generally [M/H] > -2.6and typically 1/30th of solar

• well above the IGM -- implies either in situ star formation or enrichment from previous generations of stars

Evidence for star formation in DLAs?

2) Metallicity evolves with cosmic time (Prochaska+03, Rafelski+12)

Regina Jorgenson, IfA Hawaii

raj@ifa.hawaii.edu

Evidence for star formation in DLAs?

raj@ifa.hawaii.edu

Key Question

• So there is evidence of star formation in DLAs, but where and how is the gas actually turning into stars?

 Star formation requires/traces molecular hydrogen (H₂) so...

Where to look for H₂ in DLAs?

Regina Jorgenson, IfA Hawaii

Synthetic H₂ spectrum

Regina Jorgenson, IfA Hawaii

Synthetic H_2 + forest spectrum

First H₂ detection in a DLA

Levshakov & Varshalovich (1985)

Surveys for H₂ in DLAs

- 2003: Ledoux et al.
 - 33 mainly archival VLT/UVES spectra
 - 13 20% detection rate
- 2008: Noterdaeme et al. (N08)
 - 77 mainly archival spetra
 - 10 18% detection rate
 - molecular fractions of log f = -1 to -6
- But, strong biases exist!
 - Bright quasars selected for high resolution spectroscopy
 - strong metal-absorption selection in archive
 - mainly high N(HI) systems targetted

Biases in previous surveys

The Magellan Uniform DLA Survey: the first large, blind and uniform DLA survey

- $\sim 100 \ z \ge 2.2 \ DLAs$
 - i ≤ 19.0 mag
 - $\delta \le 15^{\circ}$

- Magellan/MagE spectrograph is ideal for this
 - R~4000 (~ 71 km/s)
 - Very UV sensitive

Regina Jorgenson, IfA Hawaii

Regina Jorgenson, IfA Hawaii

Regina Jorgenson, IfA Hawaii

Magellan Uniform DLA Survey Results

- 86 DLAs with searchable H₂ spectra
- Main Result: Only 1 (previously known) H₂ absorber found!
 - detection rate $\sim 1\%$
 - Naive expectation = $\sim 15 \text{ H}_2$ -bearing DLAs
 - 12/68 (18%) H₂ -bearing DLAs from Noterdaeme+08
 - Expected ~9 strong H₂ -bearing DLAs
 - 8/12 (~60%) of the N08 H₂ detections are above the general MagE H₂ sensitivity limit (N(H₂) ≥ 10¹⁸ cm⁻²)
 - Given that we only detect 1, this is a 3σ deviation from the expected result.

H₂ upper limits depend on assumed Doppler parameter (b)

Magellan sample < $N(H_2)$ upper limit> for conservative b=2 km/s is 0.85 dex less than N08

Regina Jorgenson, IfA Hawaii

Magellan sample < $N(H_2)$ upper limit> for conservative b=2 km/s is 0.85 dex less than N08

Regina Jorgenson, IfA Hawaii

Similar result for molecular fraction, $f \equiv 2N(H_2) / [2N(H_2) + N(HI)]$ ~3.7 times less

Cumulative Distribution confirms result

Cumulative Distribution confirms result

Cumulative Distribution confirms result

Did we detect known H₂? (yes!)

Regina Jorgenson, IfA Hawaii

Local Comparisons

• H₂ detected in most sightlines through MW (Wakker+06)

• H₂ detected in >50% of Magellanic cloud sightlines (Shull+00, Welty+12)

• Average H₂ fractions are typically 10% for MW and 1% for Magellanic Clouds (Tumlinson+02, Welty+12)

Where is the H₂ in DLAs?

- Zwaan & Prochaska, 2006
 - used CO maps of local galaxies
 - 97% of the H₂ mass is in systems with N(H₂) > 10²¹cm⁻²
 - Much of it may be in much higher column density systems that also have small impact parameters, small covering factors and high dust content

Zwaan&Prochaska 2006

DLA cartoon model

Summary

At high redshifts DLAs serve as important neutral gas reservoirs for star formation

H₂ content (covering factor and fraction) in DLAs less than expected from previous (biased) samples, more likely ~1 - 5%

H₂ most likely confined to cold, dense `clouds' with small covering factor, likely associated with PDR-type regions

