THE EFFECT OF METALLICITY ON MOLECULAR GAS AND STAR FORMATION IN THE MAGELLANIC CLOUDS

Collaborators: Alberto Bolatto (UMD), Adam Leroy (NRAO), Margaret Meixner (STScI), Mark Wolfire (UMD), Karin Sandstrom (MPIA), Julia Roman-Duval (STScI), Karl Gordon (STScI), Annie Hughes (MPIA), Sue Madden (CEA), + HERITAGE Team

THIS TALK IN A NUTSHELL

1. Molecular Gas and Star Formation in the LMC

- New H₂ map using Dust instead of CO
- CNM and WNM important for star formation model

2. Heating and Cooling of H₂ in the SMC – *Physical conditions of warm H*₂

3. Revealing the structure of "CO-faint" H₂ in the SMC using [CII]

- Ratio of [CII] to ¹²CO in N22

How does star formation efficiency depend on galaxy mass and metallicity?

CO traces less H₂ at lower metallicity

Dust can **trace** H₂ at low metallicity.

Fit T_d to HERITAGE data and map $\tau_{160\mu m}$

 T_d fit modified blackbody with $\beta = 1.8$

T₁₆₀ proportional to M_{dust}

Mapping H₂ using dust emission

Previous Work: MCs – Israel (1997); MW – Dame+ (2001); SMC – Leroy+ (2007); Leroy et al. (2009); Bolatto et al. (2011)

How galaxies convert molecular gas to stars does not vary strongly with metallicity.

Different approximations of the ISM: pressure-driven vs. shielding

How well do the models predict the fraction of molecular gas?

How about predicting star formation rate based on total gas?

THIS TALK IN A NUTSHELL

1. Molecular Gas and Star Formation in the LMC

- New H₂ map using Dust instead of CO
- CNM and WNM important for star formation model

2. Heating and Cooling of H₂ in the SMC – *Physical conditions of warm H*₂

3. Revealing the structure of "CO-faint" H₂ in the SMC using [CII]

- Ratio of [CII] to ¹²CO in N22

Spitzer Spectroscopic Survey of the SMC (S⁴MC)

(Sandstrom et al. 2012)

Fitting line emission in the IRS S⁴MC data

Mapping H₂ line emission in the SMC

Modeling H₂ line emission

Physical conditions of warm H₂ in the SMC

$f(H_2 > 100K) \sim 10-20\%$

THIS TALK IN A NUTSHELL

1. Molecular Gas and Star Formation in the LMC

- New H₂ map using Dust instead of CO
- CNM and WNM important for star formation model

2. Heating and Cooling of H₂ in the SMC – *Physical conditions of warm H*₂

3. Revealing the structure of "CO-faint" H₂ in the SMC using [CII]

- Ratio of [CII] to ¹²CO in N22

Herschel Spectroscopic Survey of the SMC (HS³)

(PI: Bolatto)

Mapping the structure of "CO-dark" H₂ gas

- Map detailed structure

Preliminary results: Comparing $I_{[CII]}/I_{CO}$ in N22 to IC 10

THIS TALK IN A NUTSHELL

1. Molecular Gas and Star Formation in the LMC

- New H₂ map using Dust instead of CO
- CNM and WNM important for star formation model

2. Heating and Cooling of H₂ in the SMC – *Physical conditions of warm H*₂

3. Revealing the structure of "CO-faint" H₂ in the SMC using [CII]

- Ratio of [CII] to ¹²CO in N22

Extra Slides...

Map H₂ using dust emission

Previous Work: MCs – Israel (1997); MW – Dame+ (2001); SMC – Leroy+ (2007); Leroy et al. (2009); Bolatto et al. (2011)

GDR map smoothed to 500 pc ($\beta = 1.8$)

Regional variations in the GDR and $N_{\rm HI}$ offset

Regional variations in the GDR and $N_{\rm HI}$ offset

30 Dor

Molecular Ridge

Constant SSFR with decreasing metallicity

Fraction of molecular gas as a function of metallicity

LMC

"Star Formation Law" as a function of metallicity

LMC

Results from modeling H₂ line emission

Heating and cooling of H₂ in the SMC

