

Phases of the ISM as seen by LITTLE THINGS

Elias Brinks Centre for Astrophysics Research University of Hertfordshire

Date: 1st August 2013

Phases of the ISM, Heidelberg

Content

Brief overview of LITTLE THINGS

* Breaking the metallicity barrier: CO in the dIrr galaxy WLM

Content

- Brief overview of LITTLE THINGS
- * Breaking the metallicity barrier: CO in the dir galaxy WLM

LITTLE THINGS

LITTLE: Local Irregulars That Trace Luminosity Extremes THINGS: The HI Nearby Galaxy Survey

DDO 75

LITTLE THINGS provides observations of the neutral, atomic gas phase with the Karl G. Jansky VLA, the reservoir of the fuel for star formation Messier 74 = NGC 628

The Team

Deidre Hunter (**PI**, Lowell Observatory) Elias Brinks (Univ of Hertfordshire, UK) Bruce Elmegreen (IBM T. J. Watson Research Center) Michael Rupen (NRAO) Caroline Simpson (Florida International Univ) Fabian Walter (MPIA, Germany) David Westpfahl (New Mexico Tech) Lisa Young (New Mexico Tech)

Trisha Ashley (pre-doc, FIU) Phil Cigan (pre-doc, New Mexico Tech) Dana Ficut-Vicas (pre-doc, Univ Hertfordshire) Ged Kitchener (pre-doc, Univ Hertfordshire) Volker Heesen (post-doc, Univ Southampton) Kim Herrmann (Penn State – Mont Alto) Megan Jackson (post-doc NRAO) Se-Heon Oh (Univ Western Australia) Andreas Schruba (CalTech) Hongxin Zhang (Peking Univ)

LT Team meeting, Lowell Observatory, June 2012

The Sample

The larger sample was selected to have gas, so targets could form stars in principle, and not be obviously interacting as we are interested in internal triggering processes (Hunter & Elmegreen 2004, 2006).

The LITTLE THINGS subsample, 42 targets, covers the range of properties of the larger survey; it is representative and includes the extremes.

	VLA Array		Ch sep D	$M_V = R_H^a$	Incl.	$\log M_{HI}$	$\log \mathrm{SFR}_D^{\mathrm{b}}$		
Galaxy	Archive	New Obs	(km/s)	(Mpc)	(mag)	(arcmin)	(deg)	(M_{\odot})	$(M_{\odot}/yr/kpc^2)$
				Im (Galaxies				
CVnIdwA	С	BD	1.3	4.1	-12.6	0.87	40	7.79	-2.64
DDO 43	CD	В	2.6	5.5	-14.3	0.89	48	7.97	-2.19
DDO 46		BCD	2.6	5.5	-14.4	9.99	28	8.13	-2.96
DDO 47	BCD	202	2.6	5.2	-15.5	2.24	64	8.60	-2.75
DDO 50	BCD		2.6	3.4	-16.6	3.97	46	8.86	-1.83
DDO 52	000	BCD	2.6	6.0	-14.3	1.08	51	7.97	-3.27
DDO 53	BCD	202	2.6	3.6	-13.8	1.37	64	8.26	-2.50
DDO 63	BCD		2.6	3.8	-14.7	2.17	0	8.18	-3.44
DDO 69	BCD		1.3	0.8	-11.7	2.40	60	7.00	-3.28
DDO 70	BCD		1.3	1.3	-14.1	3 71	57	7.59	-2.86
DDO 75	BCD		26	1.3	-13.0	3.00	33	7.88	-1.40
000 87	C	BD	2.6	6.7	-14.7	1 15	58	8 94	-3.16
000 101	C	BD	2.0	0.0	15.8	1.15	40	7 97	-3.10
DDO 101	C	BCD	1.3	4.0	-10.0	1.00	67	8 14	-2.33
DDO 120	D	PC	1.0	6.1	-14.0	0.99	40	0.14	2.40
DDO 155	PCD	DU	2.0	4.2	-10.0	1.55	49	0.00	-2.93
DDO 154	C	PD	1.9	4.0	-14.0	1.55	00	7.00	-2.00
DDO 165	U	BCD	1.0	4.2	-12.0	0.95	41	8.10	-1.50
DDO 165		BCD	1.0	4.0	-10.7	2.14	50	7.00	-3.52
DDO 167		BCD	1.5	9.2	-13.0	0.75	52	0.95	-2.41
DDO 108		BCD	2.0	0.5	-10.0	1.00	24	0.00	-2.33
DDO 187	DOD	BCD	1.0	2.0	-13.0	1.00	30	6.90	-2.04
DDO 210	BCD		1.3	0.9	-10.9	1.31	00	0.39	4.15
DDU 210	CD	D	1.3	0.9	-13.3	4.00	09	5.89	-4.15
504-V3	CD	В	1.3	0.2	-13.2	9.99	35	7.14	0
C 10	ABC		2.6	1.0	-17.1	9.99	40	8.34	-1.31
C 1613	BCD		2.6	0.7	-14.6	9.10	31	7.53	-2.64
GS 3	CD		1.3	0.6	-9.4	0.96	04	5.05	0
M81dwA	BCD		1.3	3.6	-11.7	9.99	45	7.13	0
NGC 1156	BCD		1.3	7.8	-18.7	2.14	32	9.03	-0.87
NGC 1569	BCD		2.6	2.5	-17.6	9.99	61	7.99	0.11
NGC 2366	BCD	DOD	2.6	3.2	-16.7	4.72	72	8.83	-1.73
NGC 3738	D	BCD	2.6	4.9	-17.1	2.40	0	8.19	-1.72
NGC 4163	D	BC	2.6	2.8	-14.4	1.47	53	7.18	-2.43
NGC 4214	BCD	-	1.3	2.9	-17.6	4.67	25	8.75	-1.10
NGC 6822	12/22/2	BCD	1.3	0.5	-15.2	9.99	40	8.11	-1.96
SagDIG	CD	10010-0010	1.3	1.1	-12.4	9.99	62	6.90	-3.02
UGC 8508	and and an	BCD	1.3	2.6	-13.6	1.28	61	7.41	-2.12
WLM	BCD		2.6	1.0	-14.4	5.81	70	7.77	-2.85
				BCD	Galaxies				
Haro 29		BCD	1.3	5.4	-14.5	0.84	58	7.80	-0.82
Haro 36		BCD	2.6	9.0	-15.8	9.99	37	8.16	-1.96
Mrk 178		BCD	1.3	3.9	-14.1	1.01	68	7.00	-1.53
VIIZw 403	BCD		2.6	4.4	-14.3	1.11	66	7.85	-1.82

IC 1613

HI on optical/UV

HI

σ

DDO 50 metadata

DDO 50 metadata

- VLA HI: Observations
- UBV images
 - FITS files: U, B, V
 - Calibration parameters
 - Further information: Hunter & Elmegreen 2006
- *JHK* images: None
- Halpha images
 - FITS files:
 - Halpha (with stars)
 - Halpha (minus stellar continuum and sky)
 - Calibration parameters
 - Further information: Hunter & Elmegreen 2004
- Ultraviolet images
 - FITS files: FUV, NUV
 - Further information: Hunter, Elmegreen, & Ludka 2010, Zhang et al. (2011)
- Spitzer IRAC images
 - FITS files: LVL IRAC Data
 - Further information: Hunter, Elmegreen, & Martin 2006

https://science.nrao.edu/science/surveys/littlethings/

DDO 50 metadata NEW: 6cm radio continuum survey

DDO 50 metadata

- VLA HI: Observations
- UBV images
 - FITS files: U, B, V
 - Calibration parameters
 - Further information: Hunter & Elmegreen 2006
- *JHK* images: None
- Halpha images
 - FITS files:
 - Halpha (with stars)
 - Halpha (minus stellar continuum and sky)
 - Calibration parameters
 - Further information: Hunter & Elmegreen 2004
- Ultraviolet images
 - FITS files: FUV, NUV
 - Further information: Hunter, Elmegreen, & Ludka 2010, Zhang et al. (2011)
- Spitzer IRAC images
 - FITS files: LVL IRAC Data
 - Further information: Hunter, Elmegreen, & Martin 2006

https://science.nrao.edu/science/surveys/littlethings/

SK-plots for some of the LT dwarfs: SFR density versus HI surface density. Coloured symbols are radial averages. Cell size: 400 pc.

X-factor - metallicity relation

metallicity

Schruba et al. 2012, AJ,143, 38

LETTER

Carbon monoxide in clouds at low metallicity in the dwarf irregular galaxy WLM

Bruce G. Elmegreen¹, Monica Rubio², Deidre A. Hunter³, Celia Verdugo², Elias Brinks⁴ & Andreas Schruba⁵

Carbon monoxide (CO) is the primary tracer for interstellar clouds where stars form, but it has never been detected in galaxies in which the oxygen abundance relative to hydrogen is less than 20 per cent of that of the Sun, even though such 'low-metallicity' galaxies often form stars. This raises the question of whether stars can form in dense gas without molecules, cooling to the required near-zero temperatures by atomic transitions and dust radiation rather than by molecular line emission'; and it highlights uncertainties about star formation in the early Universe, when the metallicity was generally low. Here we report the detection of CO in two regions of a local dwarf irregular galaxy, WLM, where the metallicity is 13 per cent of the solar value2.3. We use new submillimetre observations and archival far-infrared observations to estimate the cloud masses, which are both slightly greater than 100,000 solar masses. The clouds have produced stars at a rate per molecule equal to 10 per cent of that in the local Orion nebula cloud. The CO fraction of the molecular gas is also low, about 3 per cent of the Milky Way value. These results suggest that in small galaxies both star-forming cores and CO molecules become increasingly rare in molecular hydrogen clouds as the metallicity decreases.

Wolf-Lundmark-Melotte (WLM) is an isolated dwarf galaxy at the edge of the Local Group⁶. It has a low star-formation rate because of its small size and, like other dwarf irregular (dIrr) galaxies, shows no previous evidence⁵ for the molecular gas that always accompanies young stars in larger galaxies⁶. One problem with the detection of molecules is that the dominant tracer of such gas is CO, and dIrr galaxies have low carbon and oxygen abundances relative to hydrogen. No galaxy with an O/H abundance less than 20% has been detected using CO as a tracer²⁻⁹. Far more abundant is molecular hydrogen (H₂), but this does not have an observable state of excitation at the low temperatures (~10–30 K) required for star formation.

To search for star-forming gas, we surveyed WLM for CO(J = 3-2)emission in rotational state J and for continuum dust emission at 345 GHz using the Atacama Pathfinder Experiment (APEX) telescope at Llano de Chajnantor, Chile, with the Swedish Heterodyne Facility Instrument¹⁰ and the Large APEX Bolometer Camera¹¹ (LABOCA). We also used a map of dust emission at 160 µm from the Spitzer Local Volume Legacy Survey¹² and a map of atomic hydrogen re-reduced from the archives of the Jansky Very Large Array radio telescope. The dust measurements can be converted to a dust temperature and a dust mass, and, after applying a suitable gas-to-dust ratio, to a gas mass from which the H1 mass can be subtracted to give the H2 mass for comparison with CO.

Figure 1 shows WLM and the two regions, designated A and B, where we detected CO(3-2) emission, along with H1, far-infrared (FIR) and submillimetre images. Observed and derived parameters are listed in Tables 1 and 2, respectively. The peak CO brightness temperature in each detected region is ~0.01-0.015K and the linewidth is ~12 km s⁻¹ (full-width at half-maximum). Previous efforts to detect CO(J = 1-0) in WLM5 partly overlapped region A with a 45" aperture and determined a 5 or upper limit to the CO(1-0) intensity of 0.18 K km s⁻¹. Our observation with an 18" aperture yields an intensity of 0.200 ± 0.046 K km s⁻¹ for CO(3-2) in the same region. The difference arises because the CO cloud is unresolved even by our 18" beam-we did not detect comparable CO(3-2) intensities in our searches adjacent to region A. The previous upper limit corresponds to a maximum CO(1-0) luminosity of 8,300 K km s⁻¹ pc² inside 45" (which corresponds to a beam diameter of 215 pc at WLM), whereas the cloud we detect has a CO(3-2) luminosity ~6 times smaller (1,500 K km s⁻¹ pc²). Likewise, the previous null detection⁵ in CO(J = 2-1) claimed a 5 σ upper limit that is about the same as our CO(3-2) detection, but their closest pointing differed from region A by ~70 pc (14", or half the beam diameter for CO(2-1)), which could have been enough to take it off the CO cloud.

The 160-µm, 870-µm and H: peaks are slightly offset from the CO positions, indicating variations in temperature and molecular fraction. A large H1 and FIR cloud that surrounds region A, designated region A1, was used to measure the dust temperature, $T_d \sim 15$ K, which was assumed to be the same throughout the region (the 160-µm observation does not resolve region A, and so a more localized temperature measurement is not possible). We determined T_d from the 870-µm and 160-µm fluxes corrected for the CO(3-2) line and broadband free-free emission (Table 1), assuming a modified black-body function with dust emissivity proportional to frequency to the power β . Local measurements¹³ suggest that $\beta = 1.78 \pm 0.08$, although a range is possible^{14,15}, depending on grain temperature and properties¹⁶. The 870-µm flux was also corrected for an unexplained FIR and submillimetre excess that is commonly observed in other low-metallicity galaxies^{17,18}. An alternate

Table 1 Observations of WLM

Source	Region	Right ascension	Declination	Beam diameter (**)	Flux
CO(3-2)	A	0h1min 57.32s	-15*26*49.5**	18	0.200 ± 0.046 K km s ⁻¹
HI	A	0h1min 57.32s	-15*26'49.5"	22	774 ± 40 mJy km s ⁻¹
870 µm	A	0h1min 57.32s	-15*26'49.5"	22	2.66 ± 0.53 mJy (0.11, 0.02)*
HI	A1	0h1min 56.93s	-15* 26' 40.84''	45	4.170 ± 82 mJy km s ⁻¹
870 µm	A1	0 h 1 min 56.93 s	-15° 26' 40.84"	45	15.2 ± 3.0 mJy (0.11, 0.06)*
160 µm	A1	0h1min56.93s	-15° 26' 40.84''	45	136.2 ± 13.6 mJy (0.05)†
CO(3-2)	в	0 h 2 min 1.68 s	-15* 27' 52.5"	18	0.129 ± 0.032 K km s ⁻¹

• Quantities in parentheses are the CO(3-2) flux and the free-free emission, both in mJy, that were subtracted from the source flux before calculating the dust flux.

† Quantity in parentheses is the free-free emission, in mJy, that was subtracted from the source flux before calculating the dust flux. The average FIR excess factor¹⁴ for the Small Magellanic Cloud (SMC) is 1.7, so we divide the CO-corrected and free-free-corrected 870-µm fluxes in the table by 1.7 to get the thermal dust flux.

LETTER

Carbon monoxide in clouds at low metallicity in the dwarf irregular galaxy WLM

Bruce G. Elmegreen¹, Monica Rubio², Deidre A. Hunter³, Celia Verdugo², Elias Brinks⁴ & Andreas Schruba⁵

Breaking the metallicity barrier!!!

Carbon monoxide (CO) is the primary tracer for interstellar clouds where stars form, but it has never been detected in galaxies in which the oxygen abundance relative to hydrogen is less than 20 per cent of that of the Sun, even though such 'low-metallicity' galaxies often form stars. This raises the question of whether stars can form in dense gas without molecules, cooling to the required near-zero temperatures by atomic transitions and dust radiation rather than by molecular line emission'; and it highlights uncertainties about star formation in the early Universe, when the metallicity was generally low. Here we report the detection of CO in two regions of a local dwarf irregular galaxy, WLM, where the metallicity is 13 per cent of the solar value2.3. We use new submillimetre observations and archival far-infrared observations to estimate the cloud masses, which are both slightly greater than 100,000 solar masses. The clouds have produced stars at a rate per molecule equal to 10 per cent of that in the local Orion nebula cloud. The CO fraction of the molecular gas is also low, about 3 per cent of the Milky Way value. These results suggest that in small galaxies both star-forming cores and CO molecules become increasingly rare in molecular hydrogen clouds as the metallicity decreases.

Wolf-Lundmark-Melotte (WLM) is an isolated dwarf galaxy at the edge of the Local Group⁶. It has a low star-formation rate because of its small size and, like other dwarf irregular (dIrr) galaxies, shows no previous evidence⁵ for the molecular gas that always accompanies young stars in larger galaxies⁶. One problem with the detection of molecules is that the dominant tracer of such gas is CO, and dIrr galaxies have low carbon and oxygen abundances relative to hydrogen. No galaxy with an O/H abundance less than 20% has been detected using CO as a tracer²⁻⁹. Far more abundant is molecular hydrogen (H₂), but this does not have an observable state of excitation at the low temperatures (~10–30 K) required for star formation.

To search for star-forming gas, we surveyed WLM for CO(J = 3-2)emission in rotational state J and for continuum dust emission at 345 GHz using the Atacama Pathfinder Experiment (APEX) telescope at Llano de Chajnantor, Chile, with the Swedish Heterodyne Facility Instrument¹⁰ and the Large APEX Bolometer Camera¹¹ (LABOCA). We also used a map of dust emission at 160 µm from the Spitzer Local Volume Legacy Survey¹² and a map of atomic hydrogen re-reduced from the archives of the Jansky Very Large Array radio telescope. The dust measurements can be converted to a dust temperature and a dust mass, and, after applying a suitable gas-to-dust ratio, to a gas mass from which the H1 mass can be subtracted to give the H2 mass for comparison with CO.

Figure 1 shows WLM and the two regions, designated A and B, where we detected CO(3-2) emission, along with H1, far-infrared (FIR) and submillimetre images. Observed and derived parameters are listed in Tables 1 and 2, respectively. The peak CO brightness temperature in each detected region is ~0.01-0.015K and the linewidth is ~12 km s⁻¹ (full-width at half-maximum). Previous efforts to detect CO(J = 1-0) in WLM5 partly overlapped region A with a 45" aperture and determined a 5 or upper limit to the CO(1-0) intensity of 0.18 K km s⁻¹. Our observation with an 18" aperture yields an intensity of $0.200 \pm 0.046 \,\mathrm{K \, km \, s^{-1}}$ for CO(3-2) in the same region. The difference arises because the CO cloud is unresolved even by our 18" beam-we did not detect comparable CO(3-2) intensities in our searches adjacent to region A. The previous upper limit corresponds to a maximum CO(1-0) luminosity of 8,300 K km s⁻¹ pc² inside 45" (which corresponds to a beam diameter of 215 pc at WLM), whereas the cloud we detect has a CO(3-2) luminosity ~6 times smaller (1,500 K km s⁻¹ pc²). Likewise, the previous null detection⁵ in CO(J = 2-1) claimed a 5 σ upper limit that is about the same as our CO(3-2) detection, but their closest pointing differed from region A by ~70 pc (14", or half the beam diameter for CO(2-1)), which could have been enough to take it off the CO cloud.

The 160-µm, 870-µm and H: peaks are slightly offset from the CO positions, indicating variations in temperature and molecular fraction. A large H1 and FIR cloud that surrounds region A, designated region A1, was used to measure the dust temperature, $T_d \sim 15$ K, which was assumed to be the same throughout the region (the 160-µm observation does not resolve region A, and so a more localized temperature measurement is not possible). We determined T_d from the 870-µm and 160-µm fluxes corrected for the CO(3–2) line and broadband free–free emission (Table 1), assuming a modified black-body function with dust emissivity proportional to frequency to the power β . Local measurements¹³ suggest that $\beta = 1.78 \pm 0.08$, although a range is possible^{14,15}, depending on grain temperature and properties¹⁶. The 870-µm flux was also corrected for an unexplained FIR and submillimetre excess that is commonly observed in other low-metallicity galaxies^{17,18}. An alternate

Table 1 Observations of WLM

Source	Region	Right ascension	Declination	Beam diameter (**)	Flux
CO(3-2)	A	0h1min 57.32s	-15' 26' 49.5"	18	0.200 ± 0.046 K km s ⁻¹
HI	A	0h1min 57.32s	-15* 26' 49.5"	22	774 ± 40 mJy km s ⁻¹
870 µm	A	0h1min 57.32s	-15* 26' 49.5"	22	2.66 ± 0.53 mJy (0.11, 0.02)*
HI	A1	0h1min 56.93s	-15* 26' 40.84''	45	4,170 ± 82 mJy km s ⁻¹
870 µm	A1	0 h 1 min 56.93 s	-15° 26' 40.84"	45	15.2 ± 3.0 mJy (0.11, 0.06)*
160 µm	A1	0h1min56.93s	-15° 26' 40.84''	45	136.2 ± 13.6 mJy (0.05)†
CO(3-2)	8	0h 2min 1.68s	-15*27*52.5**	18	0.129 ± 0.032 K km s ⁻¹

• Quantities in parentheses are the CO(3-2) flux and the free-free emission, both in mJy, that were subtracted from the source flux before calculating the dust flux.

† Quantity in parentheses is the free-free emission, in mUy, that was subtracted from the source flux before calculating the dust flux. The average FIR excess factor¹⁴ for the Small Magellanic Cloud (SMC) is 1.7, so we divide the CO-corrected and free-free-corrected 870-µm fluxes in the table by 1.7 to get the thermal dust flux.

LETTER

Carbon monoxide in clouds at low metallicity in the dwarf irregular galaxy WLM

Bruce G. Elmegreen¹, Monica Rubio², Deidre A. Hunter³, Celia Verdugo², Elias Brinks⁴ & Andreas Schruba⁵

Carbon monoxide (CO) is the primary tracer for interstellar clouds where stars form, but it has never been detected in galaxies in which the oxygen abundance relative to hydrogen is less than 20 per cent of that of the Sun, even though such 'low-metallicity' galaxies often form stars. This raises the question of whether stars can form in dense gas without molecules, cooling to the required near-zero temperatures by atomic transitions and dust radiation rather than by molecular line emission'; and it highlights uncertainties about star formation in the early Universe, when the metallicity was generally low. Here we report the detection of CO in two regions of a local dwarf irregular galaxy, WLM, where the metallicity is 13 per cent of the solar value23. We use new submillimetre observations and archival far-infrared observations to estimate the cloud masses, which are both slightly greater than 100,000 solar masses. The clouds have produced stars at a rate per molecule equal to 10 per cent of that in the local Orion nebula cloud. The CO fraction of the molecular gas is also low, about 3 per cent of the Milky Way value. These results suggest that in small galaxies both star-forming cores and CO molecules become increasingly rare in molecular hydrogen clouds as the metallicity decreases.

Wolf-Lundmark-Melotte (WLM) is an isolated dwarf galaxy at the edge of the Local Group⁶. It has a low star-formation rate because of its small size and, like other dwarf irregular (dIrr) galaxies, shows no previous evidence⁵ for the molecular gas that always accompanies young stars in larger galaxies⁶. One problem with the detection of molecules is that the dominant tracer of such gas is CO, and dIrr galaxies have low carbon and oxygen abundances relative to hydrogen. No galaxy with an O/H abundance less than 20% has been detected using CO as a tracer²⁻⁹. Far more abundant is molecular hydrogen (H₂), but this does not have an observable state of excitation at the low temperatures (~10–30 K) required for star formation.

To search for star-forming gas, we surveyed WLM for CO(J = 3-2)emission in rotational state J and for continuum dust emission at 345 GHz using the Atacama Pathfinder Experiment (APEX) telescope at Llano de Chajnantor, Chile, with the Swedish Heterodyne Facility Instrument¹⁰ and the Large APEX Bolometer Camera¹¹ (LABOCA). We also used a map of dust emission at 160 µm from the Spitzer Local Volume Legacy Survey¹² and a map of atomic hydrogen re-reduced from the archives of the Jansky Very Large Array radio telescope. The dust measurements can be converted to a dust temperature and a dust mass, and, after applying a suitable gas-to-dust ratio, to a gas mass from which the H1 mass can be subtracted to give the H2 mass for comparison with CO.

Figure 1 shows WLM and the two regions, designated A and B, where we detected CO(3-2) emission, along with H1, far-infrared (FIR) and submillimetre images. Observed and derived parameters are listed in Tables 1 and 2, respectively. The peak CO brightness temperature in each detected region is ~0.01-0.015K and the linewidth is ~12 km s⁻¹ (full-width at half-maximum). Previous efforts to detect CO(J = 1-0) in WLM5 partly overlapped region A with a 45" aperture and determined a 50 upper limit to the CO(1-0) intensity of 0.18 K km s⁻¹. Our observation with an 18" aperture yields an intensity of 0.200 ± 0.046 K km s⁻¹ for CO(3-2) in the same region. The difference arises because the CO cloud is unresolved even by our 18" beam-we did not detect comparable CO(3-2) intensities in our searches adjacent to region A. The previous upper limit corresponds to a maximum CO(1-0) luminosity of 8,300 K km s⁻¹ pc² inside 45" (which corresponds to a beam diameter of 215 pc at WLM), whereas the cloud we detect has a CO(3-2) luminosity ~6 times smaller (1,500 K km s⁻¹ pc²). Likewise, the previous null detection⁵ in CO(J = 2-1) claimed a 5 σ upper limit that is about the same as our CO(3-2) detection, but their closest pointing differed from region A by ~70 pc (14", or half the beam diameter for CO(2-1)), which could have been enough to take it off the CO cloud.

The 160-µm, 870-µm and H : peaks are slightly offset from the CO positions, indicating variations in temperature and molecular fraction. A large H 1 and FIR cloud that surrounds region A, designated region A1, was used to measure the dust temperature, $T_d \sim 15$ K, which was assumed to be the same throughout the region (the 160-µm observation does not resolve region A, and so a more localized temperature measurement is not possible). We determined T_d from the 870-µm and 160-µm fluxes corrected for the CO(3-2) line and broadband free-free emission (Table 1), assuming a modified black-body function with dust emissivity proportional to frequency to the power β . Local measurements¹³ suggest that $\beta = 1.78 \pm 0.08$, although a range is possible^{14,15}, depending on grain temperature and properties¹⁶. The 870-µm flux was also corrected for an unexplained FIR and submillimetre excess that is commonly observed in other low-metallicity galaxies^{17,18}. An alternate

Table 1 Observations of WLM

Source	Region	Right ascension	Declination	Beam diameter (**)	Flux
CO(3-2)	A	0h 1min 57.32s	-15' 26' 49.5"	18	0.200 ± 0.046 K km s ⁻¹
HI	A	0h1min57.32s	-15" 26' 49.5"	22	$774 \pm 40 mJy km s^{-1}$
870 µm	A	0h1min 57.32s	-15*26'49.5"	22	2.66 ± 0.53 mJy (0.11, 0.02)*
HI	A1	0 h 1 min 56.93 s	-15° 26' 40.84''	45	4.170 ± 82 mJy km s ⁻¹
870 µm	A1	0 h 1 min 56.93 s	-15° 26' 40.84''	45	15.2 ± 3.0 mJy (0.11, 0.06)*
160 µm	A1	0 h 1 min 56.93 s	-15° 26' 40.84''	45	136.2 ± 13.6 mJy (0.05)†
DO(3-2)	8	0 h 2 min 1.68 s	-15* 27' 52.5"	18	0.129 ± 0.032 K km s ⁻¹

Quantities in parentheses are the CO(3-2) flux and the free-free emission, both in m/y, that were subtracted from the source flux before calculating the dust flux.

† Quantity in parentheses is the free-free emission, in mJy, that was subtracted from the source flux before calculating the dust flux. The average FIR excess factor¹⁸ for the Small Magellanic Cloud (SMC) is 1.7, so we divide the CO-corrected and free-free-corrected 870-um fluxes in the table by 1.7 to get the thermal dust flux.

Elmegreen et al. 2013, Nature, 495, 487

GMC as function of Z

Changing structure of a GMC as metallicity decreases: ISM⁺ (yellow) and PDR (grey) increase while CO (dark grey) decreases. As dust decreases, A_V ~ 1 moves deeper into the GMC.

CO disappears $A_V \leq 2$; H_2 can exist at lower A_V .

ISM at low metallicity

- * low metallicity \rightarrow low dust content (GDR \propto Z⁻¹)
- PAH emission down
- T_{dust} increases (~32 K in dIrr versus 20-25 K for spirals)
- * excess sub-mm emission beyond 500 μm (cold dust reservoir?)
- * [CII] 158 μm/CO increases
- * α_{CO} increases steeply with decreasing metallicity

X-factor(Z) and DGR(Z)

WLM: Wolf-Lundmark-Melotte

- * D = 985 ± 33 kpc
- * $M_* = 1.6 \times 10^7 M_{\odot}$
- * $M_{HI}\,{=}\,7.1\,{\times}\,10^7~M_{\odot}$
- * $V_{rot} = ~36 \text{ km s}^{-1}$
- * $12 + \log(O/H) = 7.8$ (SMC: 8.0)
- * $SFR = 0.006 M_{\odot} yr^{-1}$
- * sSFR (WLM) = $12 \times sSFR$ (MW)

APEX CO(J=3-2) detection

CO (J=3-2) detected at two locations in WLM

18" beam

 5σ detections

velocity agrees with HI

Elmegreen et al. 2013, Nature, 495, 487

LABOCA cold dust in WLM

Also, cold dust detected near region A, at 870 µm with LABOCA on APEX

LABOCA detection coincides with *Spitzer* 160 µm

APEX CO(J=3-2) detection

Herschel PACS [CII] in WLM

Herschel PACS [CII] in WLM

GMCs in WLM

- * use the MIPS and LABOCA to calculate the dust mass
- convert the dust mass to a total (HI+H₂) gas mass; we assume that the DGR continues to scale linearly with metallicity, so GDR = 1100 (assumed; MW value of ~145 scaled by [O/H])
- * subtract the observed HI mass; this leaves the H₂ mass
- * GMC mass: $1.8\pm0.8\times10^5~M_{\odot}$ and $1.2\pm0.6\times10^5~M_{\odot}$
- * this leads to a mass conversion factor $\alpha_{CO} = 124 \pm 60 \text{ M}_{\odot} \text{ pc}^{-2} / (\text{K km s}^{-1}) \text{ or } \sim 30 \times \text{MW}$ value (X_{CO}-factor: $5.8 \pm 2.8 \times 10^{21} \text{ cm}^{-2} / (\text{K km s}^{-1})$

Conversion factor versus metallicity

Schruba et al. 2012, AJ,143, 38

Summary

- * LITLE THINGS is in great shape...watch this space!
- We broke in WLM (12+log(O/H) = 7.8) the low-metallicity limit for a CO detection
- * $\alpha_{CO} = 124 \pm 60 \text{ M}_{\odot} \text{ pc}^{-2} / (\text{K km s}^{-1}) \text{ or } \sim 30 \times \text{MW} \text{ value}$
- * GDR = 1100 (assumed; MW value scaled by [O/H])
- * GMC mass: $1.8 \pm 0.8 \times 10^5$ M $_{\odot}$ and $1.2 \pm 0.6 \times 10^5$ M $_{\odot}$
- SFR per molecule in WLM ~ SFR in MW (SFE ~ 1.5 6.7 Gyr)

The End