THE COOLING OF GAS IN NEARBY GALAXIES

STUDYING GALAXIES WITH "NAMES"

Fig 18 Auchile oferer, ghaliled Chrise 1845, company fordored and sugaral or different. night for no his wone to an floged handit aread the section at the

THE THIRD EARL OF ROSSE, 1845

MASSIVELY MULTI-WAVELENGTH NEARBY GALAXY SURVEYS (~70 GALAXIES <30MPC), BUILT AROUND THE 2001 SPITZER IMAGING + SPECTROSCOPY LEGACY PROGRAM SINGS.

MINATS

KINGFISH HERSCHEL SURVEY: 70–550µM, PACS/SPIRE IMAGING + PACS SPECTROSCOPY, 540 HOURS

MASSIVELY MULTI-WAVELENGTH NEARE GALAXY SURVEYS (~70 GALAXIES <30MPC), BUILT AROUND THE 2001 SPITZER IMAGING + SPECTROSCOPY LEGACY PROGRAM SINGS.

KINGFISH HERSCHEL SURVEY: 70–550µM, PACS/SPIRE IMAGING + PACS SPECTROSCOPY, 540 HOURS

KINGFISH ON DUST

KINGFISH ON DUST

M101 D=7.1MPC

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

HTTP://HERSCHEL.CF.AC.UK/KINGFISH

HTTP://HERSCHEL.CF.AC.UK/KINGFISH

KINGFISH SPECTRA

- 54 NUCLEAR MAPS (INNER ~3 KPC)
- 48 EXTRANUCLEAR POSITIONS IN 19 GALAXIES.
- RADIAL STRIPS, MATCHED TO SINGS IRS MAPS IN 31 GALAXIES.

PACS 70/100/160

KINGFISH SPECTRA

- 54 NUCLEAR MAPS (INNER ~3 KPC)
- 48 EXTRANUCLEAR POSITIONS IN 19 GALAXIES.
- RADIAL STRIPS, MATCHED TO SINGS IRS MAPS IN 31 GALAXIES.

PACS 70/100/160 PACS [CII]

THE TOP 10 MOST LUMINOUS (OBSERVED) EMISSION LINES OF STAR-FORMING GALAXIES

KINGFISH GAS SCIENCE

HEATING/COOLING

- DIFFUSE IONIZED GAS
- PHYSICAL CONDITIONS OF THE ISM

- **KINEMATICS**
- COOLING LINES AS SFR TRACERS (ALBERTO'S TALK)
- THE HEAVY ELEMENT ABUNDANCE SCALE

KINGFISH GAS SCIENCE [CII] [NII] [OI] [OII]

- HEATING/COOLING
- DIFFUSE IONIZED GAS
- PHYSICAL CONDITIONS OF THE ISM

- **KINEMATICS**
- COOLING LINES AS SFR TRACERS (ALBERTO'S TALK)
- THE HEAVY ELEMENT ABUNDANCE SCALE

COOLING

HEATING

THE "COOLING PROBLEM"

LINE DEFICITS REVEAL DRASTIC DROP IN COOLING POWER IN LUMINOUS GALAXIES.... WHERE STAR FORMATION EFFICIENCY IS HIGHEST.

GRAINS HEATING THE GAS

- AN EARLY LOOK: ISO KEY PROJECT ON NORMAL GALAXIES
- SMALL DUST GRAINS: PRIMARY SOURCE OF PHOTO-ELECTRONS HEATING UV ILLUMINATED NEUTRAL GAS.

A ULIRG PHENOMENON?

LUHMAN+ '03

A ULIRG PHENOMENON?

LUHMAN+ '03

1

GENZEL+ 2010

HERSCHEL SPECTROSCOPY

1.6

1.4

-1.2

-1.0

0.6

0.4

0.2

W m⁻²sr

FIRST TIME: ACCESS TO ALL PLAYERS IN THE HEATING/COOLING OF GAS WITHIN GALAXIES ON <KPC SCALES.</p>

HERSCHEL SPECTROSCOPY

FIRST TIME: ACCESS TO ALL PLAYERS IN THE HEATING/COOLING OF GAS WITHIN GALAXIES ON <KPC SCALES.</p>

THERMAL BALANCE

Two PILOT GALAXIES: NGC4559 + NGC1097

CROXALL+, 2012

BREAKING POINT

BREAKING POINT

PAH IONIZATION

DUST GRAINS: LESS EFFECTIVE AT HEATING GAS WHEN IONIZED!

PHOTONS, OR METALS?

WOLFIRE+ 2010

MADDEN+ 2000

HEATING V. COOLING

DEFICIT AT HIGHER LUMINOSITY

DÍAZ-SANTOS+ 2013

AGN IMPACT

SARGSYAN+ 2012

AGN IMPACT

DEFICIT: AN L(AGN)/L(TOTAL) AFFAIR?

SARGSYAN+ 2012

AGN IMPACT

IN DEFENSE OF THE H₂ MOLECULE

IN DEFENSE OF THE H₂ MOLECULE

IN DEFENSE OF THE H₂ MOLECULE

NORMAL GALAXIES

EARLY TYPE GALAXIES

RADIO LOUD AGN

COOLING FLOW RADIO GALAXIES

LENSED GALAXIES AT Z~3

ULIRGS

UV-SELECTED Z~0.5 GALAXIES

AND YET...

COOL CORE GALAXY CLUSTERS

SHOCKED INTERGALACTIC RIDGES

ULIRGS AND QUASARS

$CO \Rightarrow H_2$

TAURUS MOLECULAR CLOUD

Taurus Molecular Cloud 13CO J=1-0

Dec. Offset (deg.)

$CO \Rightarrow H_2$

TAURUS MOLECULAR CLOUD

Taurus Molecular Cloud 12CO J=1-0 (Sat Feb 21 03:53:17 2004 GMT)

Dec. Offset (deg.)

$CO \Rightarrow H_2$

TAURUS MOLECULAR CLOUD

Taurus Molecular Cloud 12CO J=1-0 (Sat Feb 21 03:53:17 2004 GMT)

BAD DOG

SANDSTROM+ ACCEPTED

Molecular temperature T(K)

TOGI & SMITH, IN PREP

Molecular temperature T(K)

TOGI & SMITH, IN PREP

Molecular temperature T(K)

TOGI & SMITH, IN PREP

TAIL: MEET DOG

GOING WHERE NO CO DARES TO GO

RESOLVED FAR-INFRARED SPECTRAL MAPPING OF NEARBY GALAXIES WITH SPIRE/FTS

 $Log_{10}([N II]/H\alpha)$

N

ar

NGC3627

PPAK FoV SPIRE FTS Regions

α_{co} vs. CO excitation

COURTESY K. SANDSTROM

12 + LOG(O/H) = 8.1O.2 Zo

12 + LOG(OH) = 8.1O.2 Zo

OXYGEN ABUNDANCE SCALE

IS THE UNIVERSE SUPER-SOLAR, OR SUB-SOLAR?

- OXYGEN MOST COMMON ELEMENT FOR METAL ABUNDANCE DETERMINATIONS: CONVENIENT BRIGHT OPTICAL TRANSITIONS.
- CALIBRATING:

 TO MODELS OF HII
 REGIONS,
 TO "DIRECT"
 TEMPERATURE-SENSITIVE
 MEASUREMENTS

DISAGREE BY FACTORS OF 4!

OXYGEN ABUNDANCE SCALE

IS THE UNIVERSE SUPER-SOLAR, OR SUB-SOLAR?

- OXYGEN MOST COMMON
 ELEMENT FOR METAL
 ABUNDANCE
 DETERMINATIONS:
 CONVENIENT BRIGHT OPTICAL
 TRANSITIONS.
- CALIBRATING:

 TO MODELS OF HII
 REGIONS,
 TO "DIRECT"
 TEMPERATURE-SENSITIVE
 MEASUREMENTS

DISAGREE BY FACTORS OF 4!

OXYGEN ABUNDANCE SCALE

IS THE UNIVERSE SUPER-SOLAR, OR SUB-SOLAR?

- OXYGEN MOST COMMON
 ELEMENT FOR METAL
 ABUNDANCE
 DETERMINATIONS:
 CONVENIENT BRIGHT OPTICAL
 TRANSITIONS.
- CALIBRATING:

 TO MODELS OF HII
 REGIONS,
 TO "DIRECT"
 TEMPERATURE-SENSITIVE
 MEASUREMENTS

DISAGREE BY FACTORS OF 4!

FIR TO THE RESCUE

FIR TO THE RESCUE

FIR TO THE RESCUE

FIR TO THE RESCUE

TEMPERATURE MATTERS

Thursday, August 1, 13

SPLITTING THE DIFFERENCE

KINGFISH DATA RELEASE:

✓ ALL IMAGING

SPECTRAL MAPS/CUBES: FALL, 2013

HTTP://HERSCHEL.ESAC.ESA.INT/USERREDUCEDDATA.SHTML

Thursday, August 1, 13