The Lifecycle of (radiative) feedback-regulated GMCs

Desika Narayanan Bart J Bok Fellow University of Arizona

(with Phil Hopkins, Mark Krumholz, Eve Ostriker)

awesome galaxy picture by adam leroy

awesome galaxy simulation by desika narayanan

Σн2

Σн2

0 Myr

Gas

Simulations

I pc res. GADGET
T < 100 K cooling
H₂-HI breakdown (KMT)
GMCs ID'd with FOF

Star Formation

5. $\rho_{SFR} \sim \mathcal{E} \propto \rho_{H2} (n > 1000) / t_{ff}$ 6. $P = P_{sn} + P_w + P_{rad}$ 7. $P_{rad} \sim (1 + \sum^* \varkappa) L/c$

Galaxy 8. M_{halo} = 1.6e12 9. M_{bar} = 7.1e10

$\rho_{SFR} \sim \varepsilon \times \rho_{H2} (n > 1000)/t_{ff}$

Hopkins, Narayanan, Murray & Quataert (2013)

 $\rho_{SFR} \sim \varepsilon \times \rho_{H2}(n > 1000)/t_{ff}$

Dense Gas Distribution Constraints on Feedback Model

Hopkins, Narayanan, Murray & Quataert (2012)

Narayanan, Hopkins & Murray in prep.

virial parameter on KS plot - standard model

Narayanan, Hopkins & Murray in prep.

virial parameter on KS plot - no radiative feedback

Narayanan, Hopkins & Murray in prep.

Σн2

Radiative Feedback Dominated ISM in Starbursts

slope ~ 2

Ostriker & Shetty 2011 Shetty & Ostriker 2012

How do we get the X-axis?

I.Assume GMC is viralized and use CO line width as mass measurement

 H_2

 H_2

CO H₂

 H_2

 H_2

 H_2

 H_2

 H_2

 H_2

CO

H₂

 H_2

 H_2

CO

 $H_2 H_2 H_2$

 H_2

 H_2

H₂ CO

 H_2

CO H₂

 H_2

CO

 H_2

 H_2

II.Assume a DTG ratio and get dust masses

III. CR + H₂ --> γ -ray

 $X_{co} = N_{H2}/I_{co} = 2.4 \times 10^{20} \text{ cm}^{-2}/\text{K-km s}^{-1}$

"Merger Value"

 $X_{CO} \sim \text{few } \times 10^{19} \text{ cm}^{-2}/\text{K km s}^{-1}$

 $X_{CO} \sim 2 \times 10^{20} \text{ cm}^{-2}/\text{K km s}^{-1}$

Daddi+ 2010; Genzel+ 2010

TURTLEBEACH; Narayanan et al. 2006,2008

The Physics Controlling X_{co} I: Gas Kinematics and Thermal Structure

 $X_{co} = N_{H2}/W_{co} \sim N_{H2}/(T^*\sigma)$

velocity

$Xco = N_{H2}/W_{CO} \sim N_{H2}/(T^*\sigma)$

X_{CO} ~ 2x10²⁰ cm⁻²/K km s⁻¹

Narayanan, Krumholz, Ostriker & Hernquist 2011,2012 Narayanan & Hopkins (2012) Shetty, Glover+ 2011,2012

$Xco = N_{H2}/W_{CO} \sim N_{H2}/(T^*\sigma)$

Virialized GMCs unaffected by galactic environment

X_{CO} ~ 2x10²⁰ cm⁻²/K km s⁻¹

N_{H2} ~ 10²³ cm⁻²
T~ 50 K
σ~ 50 km/s

non-virialized GMCs strongly affected by galactic environment

 $X_{CO} \sim \text{few x I 0^{19} cm^{-2}/K km s^{-1}}$

This results in a relation between $X_{\rm CO}, Z'$, and $\langle W_{\rm CO} \rangle$: $X_{\rm CO} = \frac{6.75 \times 10^{20} \langle W_{\rm CO} \rangle^{-0.32}}{Z'^{0.65}} \xrightarrow{\text{Surface Brightness}}_{\text{(K-km/s)}}$

Narayanan, Krumholz, Ostriker, Hernquist 2011,2012

Narayanan, Krumholz, Ostriker & Hernquist 2011,2012

This results in a relation between X_{CO} , Z', and $\langle W_{CO} \rangle$:

$$X_{\rm CO} = \frac{6.75 \times 10^{20} \langle W_{\rm CO} \rangle^{-0.32}}{Z'^{0.65}}$$

Sandstrom et al. (2012)

Narayanan, Krumholz, Ostriker, Hernquist 2011,2012

Narayanan, Krumholz, Ostriker, Hernquist 2012

This results in a relation between X_{CO} , Z', and $\langle W_{CO} \rangle$:

$$X_{\rm CO} = \frac{6.75 \times 10^{20} \langle W_{\rm CO} \rangle^{-0.32}}{Z'^{0.65}}$$

N~1.2-1.5

(Ostriker & Shetty, 2011)

Ways Forward: CO Excitation Modeling

Cooray, Casey & Narayanan 2013 Physics Reports

Ways Forward: CO Excitation Modeling

CO (J= 6-5) line ratio vs. \sum_{SFR}

Cooray, Casey & Narayanan 2013 Physics Reports

Narayanan & Krumholz (in progress)

Ways Forward: CO Excitation Modeling

Example CO SLED: Eyelash (Lensed SMG at $z\sim 2$)

Cooray, Casey & Narayanan 2013 Physics Reports

Narayanan & Krumholz (in progress)

Summary

I. Dense gas tail of density PDF strongly dependent on feedback strength - sets the SFE of galaxies

2. GMCs dominated by radiative feedback have a natural life cycle that limits the $\Sigma_{H2} \sim 1000 \ M_{\odot} \ pc^{-2}$

This results in a relation between $X_{\rm CO}, Z'$, and $\langle W_{\rm CO} \rangle$: $X_{\rm CO} = \frac{6.75 \times 10^{20} \langle W_{\rm CO} \rangle^{-0.32}}{Z'^{0.65}}$

With a smoothly varying model for Xco, at face value, KS relation has index ~ 2 (modulo excitation effects)