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Carina with HST



Star formation is intrinsically a multi-scale and multi-physics
problem, where it is difficult to single out individual processes.

Carina with HST
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Star formation is intrinsically a multi-scale and multi-physics
problem, where it is difficult to single out individual processes.

- HH é01/902 in Carina with HST



examples

® large scales: Kennicutt-Schmidt type relations

- how does star formation depend on galactic
environment?

® Intermediate scales: molecular cloud formation

- how to connect ISM dynamics to galactic dynamics?

® small scales: star cluster formation

- what is the physical origin of

® e
} i“'» , ;

the ISM?
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- HH é01/902 in Carina with HST
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® HI gas more extended

® H2 and SF well correlated

galaxies from THINGS and HERACLES survey
(images from Frank Bigiel, ZAH/ITA)
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® standard model: roughly linear relation between H; and SFR
® standard model: roughly constant depletion time: few x 107 yr

® super-linear relation between total gas and SFR



data from STING survey (Rahman et al. 2011, 2012)
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® QUIZ: do you see a universal 2 H2 - 2 skr relation?

Shetty et al. (2013, MNRAS submitted, arXiv:1306.2951, see also Shetty, Kelly, Bigiel, 2013, MNRAS, 430, 288)



data from STING survey (Rahman et al. 2011,2012)
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® QUIZ: do you see a universal 2 H2 - 2 skr relation?

® ANSWER: - probably not
- in addition, the relation often is sublinear

Shetty et al. (2013, MNRAS submitted, arXiv:1306.2951, see also Shetty, Kelly, Bigiel, 2013, MNRAS, 430, 288)
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Hierarchical Bayesian model for STING galaxies indicate varying depleting
times.

Shetty et al. (2013, arXiv:1306.2951)



data from STING survey (Rahman et al. 201 1, 2012)
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physical origin of this behavior? all galaxies

® maybe strong shear in dense arms (example M51, Meidt et al. 2013)...

® maybe non-star forming H2 gas becomes traced by CO at high
column densities (i.e. high extinctions)...

Shetty et al. (2013, MNRAS submitted, arXiv:1306.2951, see also Shetty, Kelly, Bigiel, 2013, MNRAS, 430, 288)






Declinaton (J2000)
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molecular cloud formation
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Molecular clouds form at
stagnation points of large-
scale convergent flows,
mostly triggered by global
(or external) perturbations.
Their internal turbulence is
driven by accretion, i.e. by
the process of cloud
formation

fatm ¢m™)

HI column density 107

* molecular clouds grow in
mass

this is inferred by looking at
molecular clouds in different
evolutionary phases in the

LMC (Fukui et al. 2008, 2009)



molecular cloud formation

30 Thesis:
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25 Molecular clouds form
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correlation with large-scale perturbations

(e.g. off arm)
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density/temperature
fluctuations in warm atomic
ISM are caused by thermal/
gravitational instability and/
or supersonic turbulence

some fluctuations are dense
enough to form H, within
“reasonable time”

> molecular cloud

external perturbations (i.e.
potential changes) increase
likelihood



star formation on global scales

probability distribution
function of the density

(p-pdf)

varying rms Mach

numbers:
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-3 -2 -1 0 1 2 > M4 >

log,p p

mass weighted 0-pdf, each shifted by AlogN=1
(from Klessen, 2001; also Gazol et al. 2005, Krumholz & McKee 2005, Glover & Mac Low 2007ab)



star formation on global scales
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H, formation rate:

1.5Gyr
Ty = =
n,/1cm

for ny= 100 cm3, H, forms
within 10 Myr, this is about
the lifetime of typical MC'’ s.

in turbulent gas, the H,
fraction can become
very high on short

timescale

(for models with coupling
between cloud dynamics and
time-dependent chemistry, see
Glover & Mac Low 2007a,b)



star formation on global scales
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BUT: it doesn’t work
(at least not so easily):

Chemistry has a
memory effect!

H, forms more quickly
In high-density regions
as it gets destroyed in
low-density parts.

(for models with coupling
between cloud dynamics and
time-dependent chemistry, see
Glover & Mac Low 2007a,b)



molecular cloud formation
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(from Dobbs et al. 2008)



molecular cloud formation

molecular gas fraction of fluid

element as function of time
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Modelling the galactic ISM dynamics

(Rowan Smith et al. in preparation)

use Arepo (Springel 2012)

simplified H2 and CO

chemistry (Glover & Clark
2012)

external potential with 4-

arm spiral (e.g. Dobbs et al.
2008)

resolve down to 4 Mqun!

produce synthetic maps in
CO, HI, Ha, etc.

include feedback (soon!)



Modelling the galactic ISM dynamics

H> formation in a spiral
potential

Position[kpc]
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(Rowan Smith et al. in preparation)



Modelling the galactic ISM dynamics

velocity density
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Modelling the galactic ISM dynamics

velocities
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Modelling the ISM on | kpc scale:

¢ SILCC project (42 million CPU-h on Super-MUC,
Pl. Steffi Walch, MPA soon Cologne)

®* model 1 x 1 x 4 kpc?® region of Galactic ISM
as consistently as possible

extremely high-resolution AMR
MHD simulations (FLASH4)

SN driven turbulence

resolve star formation
down to 500 AU

radiative + mechanical
feedback from stars

time-dependent chemistry
Galactic potential

proposed

® goalis to better understand P __ simulation

volume

formation and evolution of
molecular clouds

larger-scale SF relations
Galactic fountains
Galactic matter CyCle Stellar Feedback & Qutflows




are there “dark’ clouds?

® there is increasing evidence that a significant fraction
of the H2 gas in galaxies is not traced by CO
(see e.g. Jorge Pineda’s talk yesterday)

® 3D simulations of colliding HI gas forming molecular

clouds at the stagnation region performed by Paul
Clark in Heidelberg

SPH + CO chemistry + TREECOL for calculating extinction
‘standard’ dust model

sink particles to account for local collapse (star formation)
two models: slow and fast flow



are there “dark” clouds?
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are there “dark” clouds?

- slow flow
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H> column

CO emission

Clark et al. (2012)




H> column

CO emission

fraction of CO
dark gas will
also change
with
metallicity and
with ambient
radiation field

Clark et al. (2012)




are molecules needed for star formation?

® it has been proposed that molecule formation (Ha,

CO, etc.) is a prerequisite for star formation
(e.g. Schaye 2004; Krumholz & McKee 2005; EImegreen 2007; Krumholz et al. 2009)

® the idea is that CO is a necessary coolant for collapse
® however, also C* and C are very efficient coolants

® see what is needed for star formation, by artificially

switching off certain chemical pathways
(Glover & Clark 2012)



are molecules needed for star formation?
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are molecules needed for star formation?

" no molecule formation
only atomic gas
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are molecules needed for star formation?
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" no molecule formation,
only atomic gas
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presence of molecular gas has only
very minor influence on ability of
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C™ is equally efficient coolant in
atomic phase as CO in molecular

shielding is important at high

densities: photoelectric emission from dust
grains is no longer dominant heating process

median heating and cooling
rate as function of density



are molecules needed for star formation?
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presence of molecular gas has only
very minor influence on ability of
cloud to form stars

C™ is equally efficient coolant in
atomic phase as CO in molecular

what is crucial is the ability of cloud
to shield itself from interstellar

‘radiation field

 but clouds that are big/dense

enough to shield themselves will be

~molecular! this suggests that

the correlation between H>

- and star formationis a

coincidence
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BUT: at low metallicities, H2 and HD cooling may indeed matter!

aassnal s

- . e . Figure 2. Ax Figure 1, ot for ooset of roaes that incladed e effects of Hy and BED coaling
Figure 1. Gas temperature at ¢ — tr, compated as a function of the pumber density of aydrogen neclel, n, and the strengzh of the . " s B o : h coe

wzerstellor radintion field tn units of the standard value, . for o set of rues covering a range of metallicitios betweer Z - 7. and

Z 10 2. In these runs, the effects of 1; aed 1D coclicg were not ineluded Glover & Clark (201 3)






stellar mass fuction

stars seem to follow a universal
mass function at birth --> IMF

T T Y T T T T Y ¥ T Y T T Y ¥

4k ONC (HCO00)

M35

standard

w

log,o¢, (arbitrary)

[

A S S ——
: $

log,;m [M,) Orion, NGC 3603, 30 Doradus
(Kroupa 2002) (Zinnecker & Yorke 2007)



stellar masses

* distribution of stellar masses depends on _(Kroupa 2002

- turbulent initial conditions
--> mass spectrum of prestellar cloud cores

og,o¢, (arbit.

- collapse and interaction of prestellar cores
--> accretion and N-body effects

- thermodynamic properties of gas S
--> balance between heating and cooling
--> EOS (determines which cores go into collapse)

- (proto) stellar feedback terminates star formation
ionizing radiation, bipolar outflows, winds, SN



stellar mass fuction

® distribution of stellar masses depends on

- turbulent initial conditions

--> mass spectrum of prestellar cloud cores

og,o¢, (arbit.

- collapse and interaction of prestellar cores
--> accretion and N-body effects

thermodynamic properties of gas

--> balance between heating and cooling
~ . . .

- (proto) stellar feedback terminates star formation

ionizing radiation, bipolar outflows, winds, SN, etc.

(Kroupa 2002)

application to early star formation}-



thermodynamics & fragmentation

degree of fragmentation depends on EOS!

polytropic EOS: p «p?
v<1:dense cluster of low-mass stars
v>|:isolated high-mass stars

(see Li et al. 2003; also Kawachi & Hanawa 1998, Larson 2003)



dependency on EOS
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for Y<I fragmentation is enhanced > cluster of low-mass stars

for y>1 it is suppressed = isolated massive stars

(from Li, Klessen, & Mac Low 2003,Ap), 592, 975)




how does that worlk?
(1) pOCpY S5 pocPVY

jeans

°*y<I|: > large density excursion for given pressure
> (M) becomes small

jeans

g - number of fluctuations with M > M.____is large

jeans

* v>|: - small density excursion for given pressure
2> (M) is large
- only few and massive clumps exceed M.

— jeans




EOS as function of metallicity
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EOS as function of metallicity
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EOS as function of metallicity
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EOS as function of metallicity
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present-day star formation

log n(Hp) (cm™)
0 2 4 ©
T T 1 Ll | ' !
4 (Larson 1985, Larson 2005) E

1
=23 -2l -19 -17
log p (gm/cm?)



IMF in nearby molecular clouds

2.0 PR R NES RN L R R LU S B S ]
T o x=—13 |- with p .. = 2.5-10° cm3 ]
i at SFE = 50%
1.5 . ]
k q d
Z 1.0~ ’ A . |
a I } & need appropriate
= L N EOS in order to get
LS, 0.5 2 I‘ low mass IMF right
I 1
0.0 - N
-0.5 _. ..... T T S N R L L 4 I Waipipr e qean
—~Z -1 0 1 2

(Jappsen et al. 2005,A&A, 435,61 1)



EOS as function of metallicity
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EOS as function of metallicity
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temperature T(K)
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two competing models:
*cooling due to atomic fine-structure
lines (Z > 1073 Zun)

*cooling due to coupling between gas
and dust

(Z > | Q-6 Zsun)

*which one explains origin of
extremely metal-poor stars!?
NB: lines would only make

very massive stars, with
M > few x10 Msun.



Normalised Flux

transition: Pop lll to Pop Il.5

o A SDSS J1029151+172927

®is first ultra metal-poor star with Z ~
H Call-K H

L e 104> Zsun for all metals seen (Fe, C, N,
etc.)
[see Caffau et al. 201 1]

[ UVES Call=H 1 e e e . .
10 o gt i *this is in regime, where metal-lines
ape S| g cannot provide cooling
” [e.g. Schneider et al. 201 1,2012, Klessen et al. 2012]
e e e * new ESO large
program to find
Element (XHo N lines Sn AlX)
+3Dcor. #NLTE cor. = 3D coe + NLTE cor more of these stars

C < =38 < -4.5 C-barxl 8.50

N < -4 - =50 NH-band 786 ( I 20h X-ShOOter, 30h

Mpe -4 712011 —-d468=0.11 -452:£0.11 =-449x0(.12 5 0.1 7.54

Si -4.27 -4.30 -3.91 -3.96 ). 7.52

Can -4.72 -4 .82 -4.-?.4 -4.54 i :I:]I 6.33 UVES)

Can 4812011 =483 =003 -502£002 =515£0.09 3 ). A3

Tin -4.754£0.18 —-4R83-= El.lﬁ -4.(76 £ {18 --'..;‘/2 I(l.(lb 6 (l; 6':"(l rPI E. Caffau]

Fetr -4.7320.13 =502=0.10 —-46D0D£0.13 -489x0.10 43 1.0 7.52

N:t -45520.14 —-d4850=0.11 10 6.23

Sru < =-5.10 < =525 < —4.94 < =508 ] oonr 252

(Caffau et al. 2011,2012)

(Schneider et al. 2011,2012, Klessen et al. 2012)



temperature T(K)
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approach problem with high-resolution
hydrodynamic calculations of central
parts of high-redshift halos

*SPH (40 million particles)
*time-dependent chemistry (with dust)
*sink particles to model star formation

*external dark-matter potential



temperature T(K)
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20

approach problem with high-resolution
hydrodynamic calculations of central
parts of high-redshift halos

*SPH (40 million particles)
*time-dependent chemistry (with dust)
*sink particles to model star formation
*external dark-matter potential

*focus on relevant density regime
(i.e. include dust dip and optically thick regime)
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[M/H] = -ininity
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hints for differences
In mass spectrum
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EOS as function of metallicity
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EOS as function of metallicity
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model the formation of the first stars

(Greif et al.,2007,Ap), 670, 1)

successive zoom-in calculation from
cosmological initial conditions (using
SPH and new grid-code AREPO)

(Greif et al. 201 1,ApJ, 737, 75, Greif et al. 2012, MNRAS, 424, 399,
Dopcke et al.2013,Ap), 776, 103)
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detailed look at accretion disk around first star

what is the time
evolution of
accretion disk
around first star
to form!?

successive zoom-in calculation from
cosmological initial conditions (using
SPH and new grid-code AREPO)
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(Greif et al. 201 1,ApJ, 737, 75, Greif et al. 2012, MNRAS, 424, 399,
Dopcke et al.2013,Ap), 776, 103)



First stor forms [l leg + B2 yeOrs
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Figure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up
of the protostellar disk and its eventual fragmentation. We also see *wakes’ in the low-density

regions, produced by the previous passage of the spiral arms.
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Figure 7: (a) Dominant heating and cooling processes in the gas that forms the second sink
particle. (b) Upper line: ratio of the thermal timescale, £y, 10 the free-fall timescale, £y,
for the gas that forms the second sink particle. Periods when the gas is cooling are indicated in
blue, while periods when the gas is heating are indicated in red. Lower line: ratio of fipermal 10
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similar study with very different numerical method (AREPO)

5 kpc (comoving)

First star forms (tgg)

one out of five halos

(Greif et al. 201 Ia, Ap))



similar study with very different numerical method (AREPO)
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Most recent calculations:
fully sink-less simulations, following the disk build-up over ~10 years
(resolving the protostars - first cores - down to 10° km ~ 0.0/ Re)

density temperature

(Greif et al., 2012, MNRAS, 424, 399)



expected mass spectrum

* expected IMF is flat and covers a wide range of masses
* implications
- because slope > -2, most mass is in massive objects

as predicted by most previous calculations

- most high-mass Pop lll stars should be in binary systems
--> source of high-redshift gamma-ray bursts

- because of ejection, some low-mass objects (< 0.8 M®)

might have survived until today and could potentially be
found in the Milky VWay

* consistent with abundance patterns found
in second generation stars
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The metallicities of extremely metal-
poor stars in the halo are consistent
with the yields of core-collapse
supernovae, i.e. progenitor stars with 20

- 40 M@

(e.g. Tominaga et al. 2007, Izutani et al. 2009, Joggerst et al. 2009,
2010)



primordial star formation

® just like in present-day SF, we expect
- turbulence
- thermodynamics (i.e. balance between he

- feedback
- magnetic fields

to influence first star formation.

* masses of first stars still uncertain, but we expect a wide
mass range with typical masses of several 10s of M@

* disks unstable: first stars in binaries or part of small clusters

* current frontier: include feedback and magnetic fields and
possibly dark matter annihilation...



reducing fragmentation

® from present-day star formation theory we know, that

magnetic fields: Peters et al. 201 |, Seifried et al. 2012, Hennebelle et al. 201 |
accretion heating: Peters et al. 2010, Krumholz et al. 2009, Kuipers et al. 201 |

can influence the fragmentation behavior.

in the context of Pop Il
radiation: Hosokawa et al. 2012, Stacy et al. 2012a

magnetic fields: Turk et al. 201 2, but see also Bovino et al. 2013
Schleicher et al. 2010, Sur et al. 2010, Federrath et al. 201 |, Schober et al. 2012ab, 2013

all these will reduce degree of fragmentation
(but not by much, see Rowan Smith et al. 2011, 2012, at least for accretion heating)

DM annihililation might become important for disk dynamics and
fragmentation (Ripamonti et al. 201 |, Stacy et al. 2012b, Rowan Smith et al. 2012)



Carina with HST



Star formation is intrinsically a multi-scale and multi-physics problem.
. | Many different processes need to be considered simultaneously.
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Star formation is intrinsically a multi-scale and multi-physics problem.
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® stars form from the complex interplay of self-gravity and a large number
of competing processes (such as turbulence, B-field, feedback, thermal
pressure)
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® thermodynamic properties of the gas (heating vs cooling) play a key role
In the star formation process
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Star formation is intrinsically a multi-scale and multi-physics problem.
| Many different processes need to be considered simultaneously.

® stars form from the complex interplay of self-gravity and a large number
of competing processes (such as turbulence, B-field, feedback, thermal
pressure)

® thermodynamic properties of the gas (heating vs cooling) play a key role
In the star formation process

~ ® detailed studies require the consistent treatment of many different
physical processes (this | Is a theoretlcal and computatlonal challenge)
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Star formation is intrinsically a multi-scale and multi-physics problem.
Many different processes need to be considered simultaneously.

® stars form from the complex interplay of self-gravity and a large number
of competing processes (such as turbulence, B-field, feedback, thermal
pressure)

| o thermodynamic properties of the gas (heating vs cooling) play a key role

In the star formation process

¥ @ detailed studies require the consistent treatment of many different
physical processes (this is a theoretical and computational challenge)

® star formation is regulated by several feedback loops, which are still
poorly understood

Carina with HST



Star formation is intrinsically a multi-scale and multi-physics problem.
"% | Many different processes need to be considered simultaneously.

® stars form from the complex interplay of self-gravity and a large number
of competing processes (such as turbulence, B-field, feedback, thermal
pressure)

® thermodynamic properties of the gas (heating vs cooling) play a key role
In the star formation process

- ® detailed studies require the consistent treatment of many different
physical processes (this is a theoretical and computational challenge)

® star formation is regulated by several feedback loops, which are still
poorly understood

® primordial star formation shares the same complexities as present-day

star formation
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