Mapping dust through emission and absorption in nearby galaxies

Kathryn Kreckel (MPIA)

Brent Groves (MPIA), Eva Schinnerer (MPIA), Ben Johnson (IAP) + KINGFISH collaboration

Dust extinction and reddening

Dust tracing the cold ISM

HI - Atomic Gas

CO(1-0) - Molecular Gas

M3 I (Andromeda)

PACS70 μm **PACS100** μm **SPIRE250** μm

Groves et al. (2012)

Mapping optical absorption - IFS data

NGC 5713 – V band

KINGFISH selected targets

Line reddening

Stellar continuum reddening

Wavelength

Stellar continuum reddening

Line vs stellar continuum reddening

Line vs stellar continuum reddening

Dust emission vs dust absorption

Draine & Li (2007) dust SED modeling (see Aniano et al. 2012)

NGC 3627

..... best fit scaling of screen model

Trends between galaxies

Kreckel et al. 2013

Trends within and between galaxies

Kreckel et al. 2013

Effect of physical scales

Kreckel et al. 2013

Future work – 200 pc resolution

NGC 628

and KINGFISH data

Future work – A_v vs CO

M 51 at 75 pc resolution

Conclusions

 Balmer line reddening traces the dust distribution, particularly on ~200 pc scales

 A_V (Balmer) = A_V (Foreground screen) / 3.8

- Stellar reddening is a poor tracer of the overall dust content
- HII regions are preferentially located within dusty environments

 A_v (Stellar) = 0.47 x A_v (Balmer) for HII regions ~ 0.7 x A_v (Balmer) for DIG dominated regions