ISM phases through HI absorption

Snežana Stanimirović (UW Madison)

with thanks to: Claire Murray, John Dickey, Carl Heiles, Miller Goss + 21-SPONGE, GALFA-HI, GASKAP

and apologies for not being able to cover all exciting work

A foundation dedicated to science since 1912.

Diffuse IS gas = the 1st step in the star formation cycle in galaxies

- Diffuse gas accreted
- Atomic \rightarrow molecular
- Molecular \rightarrow stars
- Stars \rightarrow diffuse gas
- How do we measure gas properties?
 CNM:
- Large-scale properties
- Variation of CNM temperature in the MW
 WNM:
- WNM in absorption and its temperature
- Open questions

Initial conditions for the assembly of dense clouds (T, n)?

Equilibrium Theory: 2 stable phases.

P/k ~ 1700 - 4400 cm⁻³ K - WNM T ~ 8000 K - CNM T ~ 50 K

MHD Simulations: Initial~8000K gas. Fraction of cold, warm and thermally unstable gas vary hugely.

- Due to numerics and/or initial conditions?

How do we measure HI absorption? Ingredients:

I. Background continuum

source: bright galaxy (whole LOS) or HII regions (near-side bias).

2. Optical depth profile:

Interferometers: $T_{b,on}/T_{bg} = e^{-\tau}$ but single dish needs to solve Eq (1)

3. T_{b,off} = "expected" emission profile = HI emission if the source suddenly turned off

High angular resolution needed to measure emission fluctuations.

 $\Delta \tau \approx \Delta T_{b,off}/T_{bg}$

$$T_{b}^{on} = T_{bg}e^{-\tau} + T_{s}(1 - e^{-\tau})$$

$$T_{b}^{off} = T_{s}(1 - e^{-\tau})$$
 (1)

How do we constrain observationally? Ingredients:

5. Radiative transfer \rightarrow Ts

To solve radiative transfer need similar angular resolution of emission and optical depth

Ts derivation methods: "differences minor" (Dickey+03)

6. Stray radiation: affects emission spectra

$$T_{\text{sys},n,j}^{*}(\nu) - T_{R,n}^{*} = [T_{\exp}(\nu)] + \left[\frac{\partial T_{\exp}(\nu)}{\partial \alpha}\right] \Delta \alpha_{j}$$
Source
temperature
$$+ \left[\frac{\partial T_{\exp}(\nu)}{\partial \delta}\right] \Delta \delta_{j} + \left[\frac{\partial T_{\exp}(\nu)^{2}}{\partial^{2} \alpha}\right] \frac{(\Delta \alpha_{j})^{2}}{2}$$

$$+ \left[\frac{\partial T_{\exp}(\nu)^{2}}{\partial \alpha \partial \delta}\right] (\Delta \alpha_{j}) (\Delta \delta_{j})$$

$$+ \left[\frac{\partial T_{\exp}(\nu)^{2}}{\partial^{2} \delta}\right] \frac{(\Delta \delta_{j})^{2}}{2}$$

$$+ [e^{-\tau(\nu)}] T_{\operatorname{ant},nj}^{*}.$$
(8)

Heiles & Troland03

Recent HI absorption surveys

Survey	Area (deg)	Emission Angular Resolution (')	Velocity Resolution (km/s)	Sensitivity 1-σ _τ per 1 km/s	Number of spectra	Telescopes
VGPS	b <1.3 I=18-67	1	1.56	0.025-0.125	113	VLA + GBT
CGPS	-3.6 <b<5.6 l=65-175</b<5.6 	1	1.32	0.023-0.115	364	DRAO + DRAO 26m
SGPS	b <1.5 I=253-358	2	1.0	0.02-0.1	96	ATCA+ Parkes
HT03	9060 sq deg	4	0.16	0.002	78	Arecibo
3C	20830 sq deg	4	0.16	0.002	23	Arecibo
Perseus	270 sq deg	4	0.16	0.002	27	Arecibo
Mohan04	b >15	36	3.3	0.005	102	GMRT+LDS
Kanekar	56500 sq deg	36	1.0	0.0005	35	WSRT/ GMRT/ATCA +LDS
SPONGE	b >15	4	0.4	<0.00073	58	VLA+Arecibo

Taylor+03, Heiles & Troland03, McClure-Griffiths+05, Stil+06, Mohan+04, Kanekar, Braun, Roy 11, SS & Heiles05, Murray+13, SS+, in prep.

Survey comparison

Interferometric (CGPA,VGPS, SGPS, GASKAP): large samples but low sensitivity. Kanekar, Braun & Roy (2011) and 21-SPONGE (SS+): the most sensitive.

Survey comparison

Low-b: Interferometers (with 0 spacings) more accurate in obtaining absorption spectra, but spectra complicated and large blending (effects Ts derivation).

High-b: profiles not affected by Galactic rotation + less complicated so less blending and fitting uncertainties.

Highly complementary!

Absorption coefficient at |b|<a few deg $\kappa(R_{gal}) = \frac{\int \tau \ dv}{\Delta s(R_{gal})}$

Peaks at 4 and 7kpc independent on rotation curve.

Increase in CNM abundance in the inner Galaxy. Low optical depth for R>10 kpc, sharp decrease at R~4kpc.

Good correlation with molecular mass <u>not</u> HI surface density \rightarrow molecular gas is associated with regions of highest opacity

Cold HI in the outer MW? All the way to R~18-25kpc and in spiral arms

Bumax

- 557 background sources + IGPS survey
- Clear detection of HI absorption in the Outer Arm (R~18 kpc) and the Distant Arm (R~18-25 kpc)
- Wolfire03: CNM/WNM equilibrium exists for R = 3 to 18 kpc.

The extreme inner Galaxy (R_{gal} < 4 kpc)

Southern Galactic Plane
 Survey + ATCA HI Galactic
 Center Survey

- I51 HI absorption spectra extracted in the direction of HII regions
- Significant HI absorption detected.

 Relative to CO, HI absorption and HII regions less abundant in 3kpc Arms.
 Photodissociation product?

Jones et al. 2013

Does T_{sp} vary across the MW disk?

"~300 K. As no evidence that T_{cool} varies across the disk \rightarrow Mixture of CNM & WNM (or CNM fraction) is constant in the MW all the way to 25 kpc.

CNM temperature: inner vs outer MW

Strasser06 (PhD): Do not observe a strong dependence on R_{gal} in the northern Galaxy (from individual absorption features)

	Inner Galaxy	Outer Galaxy
<tc></tc>	48 +/- 10 K	38 +/- 10 K
# per kpc	0.03-1	0.02-0.08
		14

Wolfire et al. (2003): properties of thermally stable CNM & WNM

					WNM	-800	JUK		CNM		
$N_{\rm cl}$ (cm ⁻²)	R (kpc)	$P_{ m min}/k - P_{ m max}/k$ (K cm ⁻³)	$P_{ m th,ave}/k$ (K cm ⁻³)	Т (К)	<i>n</i> (cm ⁻³)	T _{ave} (K)	$\binom{n_{\rm ave}}{(m^{-3})}$	Т (К)	n (cm ⁻³)	T _{ave} (K)	$n_{\rm ave}$ (cm ⁻³)
1×10^{19}	3	5580-12100	8220	8530-5030	0.579–2.17	7960	.922	345-88.8	14.6–124	124	60.2
	4	4910-10600	7210	8430-4930	0.516-1.93	7880	(.817	323-87.5	13.9–110	121	54.2
	5	4000-8850	5950	8410-4910	0.422-1.63	7880	675	312-80.6	11.6-100	111	48.6
	8.5	1960-4810	3070	8310-5040	0.209-0.860	7860	.349	258-61.6	6.91–71.0	85.0	32.9
	11	995-2420	1550	8130-5080	0.109–0.430	7700	.180	247-56.5	3.65-39.0	78.4	18.0
	15	487-1400	825	8080-5540	0.0534-0.227	7690	0958	229-43.8	1.93–29.0	62.3	12.0
	17	374-1360	713	8190-5690	0.0403-0.215	7800	0815	197–35.7	1.72–34.6	51.4	12.6
	18	272-1220	575	8320-6050	0.0287 - 0.180	7880	0648	180-30.7	1.37–36.0	44.1	11.8
$1 \times 10^{20} \dots$	3	3150-5330	4070	7820-4410	0.359–1.09	7000	0.519	411-136	6.95–35.5	100	20.6
	4	2800-4690	3620	7700-4360	0.325-0.971	6960	0.467	410-133	6.19-32.1	174	18.9
	5	2300-3910	3000	7670-4320	0.268 - 0.817	6950	0.387	401-122	5.20-29.1	161	17.0
	8.5	1240-2310	1690	7750-4300	0.142-0.485	7150	0.212	324-86.2	3.47-24.4	117	13.2
	11	652-1200	886	7560-4240	0.0770-0.257	6990	0.113	322-77.4	1.84 - 14.1	106	7.57
	15	329–674	471	7620-4470	0.0385-0.136	7170	0.0588	291-59.6	1.03 - 10.3	84.6	5.06
	17	253-629	399	7830–5260	0.0287 - 0.108	7440	0.0480	250-47.3	0.917-12.1	68.2	5.32
	18	179–548	313	8010-5760	0.0198-0.0855	7610	0.0367	223-39.3	0.727 - 12.7	57.4	4.96
$3 imes 10^{18} \dots$	3	7340-19900	12100	8800-5370	0.732-3.33	8320	1.29	280-66.6	23.8-271	95.0	115
	4	6490-17300	10600	8700-5260	0.655 - 2.97	8240	1.15	277-66.1	21.2-238	93.5	103
	5	5290-14500	8770	8670-5560	0.537 - 2.36	8210	0.950	269-61.9	17.8 - 214	87.0	91.6
	8.5	2560-7830	4480	8520-5650	0.264 - 1.25	8100	0.491	233-49.6	10.0 - 144	69.2	58.9
	11	1300-3940	2260	8330-5380	0.137-0.660	7940	0.253	223-46.0	5.29-77.8	64.3	31.9
	15	635-2300	1210	8240-5910	0.0678-0.349	7860	0.137	194–36.8	2.97 - 56.7	52.5	20.9
	17	495-2220	1050	8310-6040	0.0521-0.329	7890	0.118	180-31.1	2.50-64.8	44.4	21.5
	18	371-1970	856	8390-6020	0.0385-0.293	7940	0.0953	152-27.5	2.22-65.0	39.1	19.9

RANGE OF PHYSICAL CONDITIONS FOR TWO-PHASE MEDIUM

 P_{th} drops by factor of ~10 from R = 3kpc to R = 18 kpc.

 T_{cnm} and n_{cnm} decrease, n_{wnm} decreases while T_{wnm} ~const.

 \rightarrow "T_{sp}" expected to decrease by a factor of ~3 (up to 18 kpc).

15

Does T_{sp} vary across the MW disk?

Surprising from equilibrium perspective!

Recent HI absorption surveys

	Survey	Area (deg)	Emission Angular Resolution (')	Velocity Resolution (km/s)	Sensitivity 1-σ _τ per 1 km/s	Number of spectra	Telescopes
	VGPS	b <1.3 I=18-67	1	1.56	0.025-0.125	113	VLA
	CGPS	-3.6 <b<5.6 l=65-175</b<5.6 	1	1.32	0.023-0.115	364	DRAO
	SGPS	b <1.5 =253-358	2	1.0	0.02-0.1	96	ATCA+ Parkes
(HT03	9060 sq deg	4	0.16	0.002	78	Arecibo
	30	20830 sq deg	4	0.16	0.002	23	Arecibo
	Perseus	270 sq deg	4	0.16	0.002	27	Arecibo
	Mohan04	b >15	36	3.3	0.005	102	GMRT+LDS
	Kanekar	56500 sq deg	³⁶ Upda	1.0 ated Arec	0.0005 cibo	35	WSRT/ GMRT/ATCA +LDS
	SPONGE	b >15	4		<0.00073	58	VLA+Arecibo

Taylor+03, Heiles & Troland03, McClure-Griffiths+05, Stil+06, Mohan+04, Kanekar, Braun, Roy 11, SS & Heiles05, Murray+13, SS+, in prep.

T_{sp} @ |b| >10deg:

In agreement with other studies although a more pronounced high- T_{sp} tail.

	All Arecibo	Heiles & Troland 2003			
Median Ts	59 K	48 K			
Median Ts weighted by N(HI)	136 K	70 K			
Fraction with Ts<100K	0.7	0.77			
Fraction with Ts<25K	0.16	0.17			
Fraction with Ts>200K	0.10	0.08			
Max Ts	1800 K	656			
Mean N(HI)	2x10 ²⁰ cm ⁻²	2x10 ²⁰ cm ⁻²			
Mohan+04: peak ~75K					

CNM temperature as function of [b]

Flatter T_{sp} distribution at high-b as the relative number of warmer clouds increases. Blending? – NO. Deficiency of cold CNM clouds due to the Local Cavity? + Increase in Tsp with |z|?

19

(Indirect) WNM temperature

Fraction	All Arecibo	Heiles & Troland 2003
500-5000K (number)	0.41	0.39
500-5000K (mass)	0.44	0.50

Wolfire10: low-b distribution thermally stable?

WNM temperature from direct observations:

Very sensitive
 observations required

• Only a handful of measurements exist

WNM direct detections from 21-SPONGE (1/3 of the survey)

- Long tail to ~2000K.
 23% of detections have Ts>200K (HT03 – 8%)
- Tiny fraction (4%) of detections with Ts>1000 K (HT03 – 0%) although we have sensitivity to detect them
- Future: finish the survey, uniform sensitivity HI emission spectra, estimate completeness

Stacking analysis of HI absorption spectra from 21-SPONGE see Claire Murray's poster

Peak τ = 5x10⁻⁴ FWHM ~50 km/s Tsp ~7000 K N(HI)~2x10²⁰ cm⁻²

Stacking analysis of HI absorption spectra from 21-SPONGE: when random velocity shits are applied

All direct WNM temperature measurements

GASKAP (PI: Dickey): MW

plane + Magellanic System

5000+ HI absorption spectra → build 2d images of CNM temperature and fraction

HI+OH emission \rightarrow turbulent properties and atomic/molecular transition

GAMES with WSRT

(northern sister survey, PI: McClure-Griffiths):

HI absorption + HI/OH emission

Together, measure how CNM properties vary with interstellar environments (MW, LMC, SMC).

Dickey et al. (2012) https://sites.google.com/site/ gaskapproject/

Open Questions:

- Is CNM necessary for molecule formation? Physical association of CNM and molecular gas?
- Can we get further into the MW ouskirts and still detect HI absorption?
- Can we distinguish observationally between HI resulting from H2 photodissociation vs condensing out of WNM? Can this explain lack of HI in the 3-kpc arms?
- Is T_{sp} increasing with |z|? T_{sp} as a function of longitude? Build 2d images and fractions. Numerical predictions needed!
- Why is T_{sp} is constant across MW? Can we improve measurement accuracy to detect predicted factor of few decrease in T_{sp} ?
- Understand discrepancy btw $T_{k,max}$ and ${\bf T_{sp}}$ for the WNM. Factor CNM-bias?
- Measure CNM/WNM scale heights.
- SKA & Pathfinders: zoom in and teach us about ISM properties & mix in nearby galaxies.

