The temperature of the diffuse H in the Milky Way

Nirupam Roy MPIfR, Bonn

with N. Kanekar, J. N. Chengalur, and R. Braun

Heidelberg

July 29, 2013

The multiphase atomic ISM: a schematic

H_I 21 cm emission: emission and absorption

Credit: NRAO/AUI, Dickey & Lockman

A large fraction of unstable gas?

Arecibo Millennium survey (Heiles & Troland 2003)

Caution: a variety of temperatures ...

- Kinetic temperature (T_K)
 - velocity distribution of the thermalized gas
- Doppler temperature (T_D)
 - thermal and non-thermal broadening of line
- Spin temperature (T_s)
 - Boltzmann distribution of population

H_I 21 cm emission: emission and absorption

Credit: NRAO/AUI, Dickey & Lockman

Key Questions

- Can we detect "WNM" in H I 21 cm absorption?
 - Carilli et al. (1998), Dwarakanath et al. (2002) ...
 - Lane et al. (2000), Braun & Kanekar (2005) ...
- What is the "true" temperature distribution?
- How much gas, if any, is in unstable phase?
 - Heiles & Troland (2003) ...
 - McKee & Ostriker (1977), Wolfire et al. (1995, 2003) ...

"WNM-in-absorption"

- H absorption study with GMRT & WSRT
- 34 sources: 23 (WSRT), 11 (GMRT), [+2 (ATCA)]
- Bright, compact sources; deep integration ...
- High spectral resolution, good bandpass
- Aim to detect 8000 K gas for $N_{HI} \sim 10^{20} \, \text{cm}^{-2}$

Example spectrum

Example spectrum

Emission/absorption and T_s spectra

Column density distribution (~1 km/s resolution)

Cold gas fraction for individual lines of sight

All absorption is definitely NOT from cold gas ...

Gaussian decomposition: data, model, residual ...

Component statistics

Warm phase: stable or unstable?

All absorption is definitely NOT from stable gas ...

Conclusions

- Sensitive H_I observations can detect WNM in absorption
- Measured T_s values suggest a mix of cold and warm gas
- At least ~ 50% gas, on an average, is in the WNM phase
- But, very few (< 5%) stable WNM Gaussian components!</p>
- Comparable thermal and non-thermal line width
- Definite signature of "unstable" phase gas (> ~ 30%) for at least 40% of the lines of sight.

Thank you!

Sky distribution: towards compact background sources

Detection SNR of possible warm gas

 $T_B - \tau - T_S$ relation (~1 km/s resolution)

Possible handle on non-thermal broadening ...

Variation of component properties with Galactic (l,b)

