FIR line emission from high-z galaxies

Livia Vallini, Simona Gallerani, Andrea Ferrara, Sunghye Baek Scuola Normale Superiore, Pisa, Italy

AIM

By combining high resolution, radiative transfer cosmological simulations of a $z \approx 6$ galaxy with a sub-grid multi-phase model of its interstellar medium (ISM) we derive the expected intensity of several far infrared (FIR) emission lines.

COSMOLOGICAL SIMULATION

- Gadget-2 SPH simulation
- Number of particles: 2 x 512³ baryonic + DM
- Simulated volume: (10 h⁻¹ Mpc)³ comoving

We select a snapshot at z=6.6 and we identify the most massive halo: M_h = 1.17 × 10¹¹ M_{\odot} r_{vir} ≈ 20 kpc

We post-processed UV radiative transfer using LICORICE.

We assume that stars form in cells characterized by a gas density ρ >1 $\mbox{cm}^{\mbox{-3}}.$ The properties are comparable to that of Himiko, the most luminous Lyman Alpha Emitter (LAE) at z=6.6.

ISM MULTIPHASE MODEL

3 We adopt a sub-grid scheme based on the model by [1] and [2], in which ISM thermal equilibrium is set by the balance between heating (cosmic rays, X-rays, and photo- electric effect on dust grains) and cooling (H, He, collisional excitation of metal lines, recombination on dust grains) processes [3] :

 $L(n,xe,T) = n^2 \Lambda - n\Gamma = 0$

where $n\Gamma(n^2\Lambda)$ is the heating (cooling) rate per unit volume and n is the total gas density. The ISM can be described as a two-phase gas in which the cold (CNM) and the warm neutral medium (WNM) are in pressure equilibrium.

Fig. 3 - Left: Spectrum of [N II] from the ionized medium, binned in 1.0 km/s channels. Right: [N II] maps in mJy km/s with resolution of 0.1 arcsec and integrated over the entire spectral velocity range.

Fig. 1 - Upper panels: Projected stellar distribution (left) and hydrogen column density (right). Lower panels: warm (left), and cold (right) neutral medium column density. The distribution of WNM is more diffuse compared to that of CNM which is predominantly found in small (D~2 kpc) clumps far from SF regions.

For each cell we estimate the line luminosities $L_i = \epsilon V_{cell}$, where the emissivity, is given by:

0.25

0.00

 $\varepsilon(n,T) = \Lambda^H \chi_i n^2 + \Lambda^{e} \chi_i x_e n^2$

where n and T are the density and temperature of the WNM/CNM, Λ^{H} (Λ^{e}) is the specific cooling rate due to collision with H atoms (free electrons) taken from [3] and χ_i is the abundance of the ith species.

Fig. 2 - Left: Total (CNM+WNM) and WNM only (orange) spectrum of [CII] binned in 1.0 km/s channels. Right: [CII] maps in mJy km/s with resolution of 0.1 arcsec and integrated over the entire spectral velocity range. The contribution of clump A to the [C II] spectrum is plotted in gray. The FWHM (red arrow) of the line is ~50 km/s consistent with the marginal detection of [CII] in high-z LAEs [5].

> We evaluate also the [N II] line luminosity which provides a complementary 🕥 view of the ISM with respect to the [C II] line. Indeed, [N II] traces only the ionized medium since its ionization potential

(14.5 eV) exceeds 1 Ryd.

[N II] cooling rate due to collisions with free electrons is:

 $\epsilon_{NII}(n,T) = A hv (g_u/g_I) [(g_u/g_I + 1) (n_e/n_c)]^{-1} x_e$

where A = $7.5 \times 10^{-6} s^{-1}$ is the Einstein coefficient, v is the frequency for the ${}^{3}P_{2} \rightarrow {}^{3}P_{1}$ transition, h is the Planck constant, g_{μ}/g_{μ} is the ratio of the statistical weights in the upper and lower levels, and $n_c = 300 \text{ cm}^{-3}$ is the [N II] critical density for $T = 10^4$ K.

The [C II] emission line is detectable with the ALMA full array in 1.9 < t < 7.7 hr in star forming, high-z galaxies with Z_o > Z > 0.5 Z_o. We note that the predicted fluxes are sensitive to the actual value of Z, implying that a [C II] line detection can strongly constrain the LAE metallicity.

0.25

0.00

5