
Collimating relativisti MHD jets fromblak hole aretion disks

��������
��������
��������
��������

��������
��������
��������
��������

Master thesis by:Sander von Benda-Bekmann (Leiden Observatory, Leiden)Supervisors:Dr. C. Fendt (AIP, Potsdam)Prof. Dr. V. Ike (Leiden Observatory, Leiden)



Contents
1 Introdution 31.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 From observations to theory . . . . . . . . . . . . . . . . . . . 71.3 Review on models of (relativisti) MHD jets . . . . . . . . . . 81.4 Topi of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 122 Magnetohydrodynami Jets 142.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . 142.2 Grad-Shafranov Equation (GSE) . . . . . . . . . . . . . . . . 182.2.1 Normalizing the GSE . . . . . . . . . . . . . . . . . . . 233 Solving the Grad Shafranov Equation 253.1 Regularity ondition at the light surfae . . . . . . . . . . . . 253.2 Boundary ondition at the jet axis . . . . . . . . . . . . . . . 263.3 Jet surfae boundary ondition . . . . . . . . . . . . . . . . . 263.4 Disk and blak hole boundary onditions . . . . . . . . . . . . 273.5 Asymptoti solution for the speial relativisti GSE . . . . . . 283.5.1 Free funtions 
F (x) and I (x) of the GSE . . . . . . . 303.5.2 The asymptoti light surfae . . . . . . . . . . . . . . . 323.5.3 Solving the asymptoti GSE . . . . . . . . . . . . . . . 343.5.4 Saling the 2-D solution to the entral mass of the blakhole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.6 Grid boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . 403.6.1 Light surfae . . . . . . . . . . . . . . . . . . . . . . . 403.6.2 Outer jet surfae . . . . . . . . . . . . . . . . . . . . . 423.6.3 Disk & blak hole boundaries . . . . . . . . . . . . . . 433.6.4 Summary of the jet-model . . . . . . . . . . . . . . . . 441



4 Code Development/Testing 474.1 Developing the ode . . . . . . . . . . . . . . . . . . . . . . . 474.2 Testing the ode . . . . . . . . . . . . . . . . . . . . . . . . . . 504.2.1 Constant rotation . . . . . . . . . . . . . . . . . . . . . 514.2.2 Di�erential rotation . . . . . . . . . . . . . . . . . . . . 555 Disussion & Future Work 605.1 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605.2 Calulating the ux struture from disk physis . . . . . . . . 645.3 Solving the energy equation along the ux surfaes . . . . . . 675.4 Polarization of the jet synhrotron emission . . . . . . . . . . 696 Conlusion 72

2



Chapter 1Introdution
1.1 ObservationsThe phenomenon of highly ollimated plasma streams with high veloities,alled jets, has been observed amongst a variety of objets on wide sales inenergies and spatial extensions. The most energeti and largest jets emergefrom the nulei of ative galaxies (AGN) (e. g. Baade & Minkowski 1954;Zensus et al. 1995). Smaller jets with lower veloities have been observedaround Young Stellar Objets (YSO) (e. g. Mundt & Friedt 1983; Mundt& Eisl�o�el 1998) and reently also around miro-quasars (MQ), what arethought to be high-mass X-ray binaries (e. g. Mirabel & Rodriguez 1999).There are also reasons to believe that Gamma-Ray Burst (GRB) might be aonsequene of a jet-like soure (for a reent review M�esz�aros 2002). Typialfor jets is that they extend to huge distanes away from the entral objet(with radii up to 1000 times the size of the entral objet), with the largestthat an extend to up to 100 kiloparses.Evidene for a entral blak hole in the nuleus of the E0 elliptial M87,that ontains one of the nearest extra-galati jets (at 14.7 Mp) and is lo-ated at the enter of the Virgo luster, was found by Ford et al. (1994). UsingHST spetrosopy of its nuleus, strong evidene was found for a rapidly ro-tating ionized gas disk at its enter from whih a mass for the entral blakhole was inferred of 3 � 109 Msun. Also Kepler rotation for a ool thin diskaround a blak hole is found using VLBI maser emission in region between0.13 and 0.26 p in the NGC4258 galaxy that also ontains a jet (Myoshi atal. 1995). In the ase of miro-quasar GRS 1915 evidene has been found for3



Figure 1.1: Top left: Optial image of the jet in the M87 elliptial galaxy. Topright: VLBA radio image of the miro-quasar PKS1915 (Dhawan, Mirabel &Rodr�iguez 2000). Bottom: HST images of protostellar jets around Young Stel-lar Objets (sale represents 1000 AU).a entral blak hole with a mass of about 14 Msun (Greiner et al. 2001). Theapparent orrelation of jet-ativity with the presene of an aretion diskonto a entral blak hole has led to the general belief that the aretion diskand the blak hole play an important part in the prodution proess of thesejets.The M87 jet has been observed extensively at di�erent wavelengths (VLAradio, HST optial/uv), has strong ollimation (� 6o), and extends to largeranges ( 100 kp). Beause it is relatively lose and is strong it is an ideal jetto test models on jet formation. Junor et al. (1999) and Biretta et al. (2002)showed that the ollimation of the M87 jet ours in an area < 30 RS (whereRS is the Shwarzshild radius) to the fully ollimated zone > 100 RS. Forthe blak hole mass of M87 the RS orresponds to about 0.0003 p. The4



measured opening angles for the jet as an be seen in Fig. 1.2 show that the jetollimates from an opening angle of� 60o to� 6o. Their radio interferometryobservations give the most detailed view yet on the ollimating region of ajet.

Figure 1.2: Radio observations of the ollimation regime in the M87 jet (takenfrom Junor et al. 1999). On the left: The radio struture of the ollimating jet inthe ore of M87. On the right: The jet opening angle at di�erent distanes fromthe jet ore. This shows learly the ollimation of a wide wind into a narrow jet.The question whether the jets ontent onsists of eletron-positron pairs,or eletron-proton pairs has not been answered yet. Celotti & Fabian (1993)have addressed the issue of ontent of a sample of radio-loud quasars. Theysuggest that for the sample as a whole, either the ows are old eletron-positron ows or eletron-proton ows with an energy ut-o� of � 50 MeV.Observations of the M87 jet by Reynolds et al. (1996) indiate that the M87jet is likely to be an eletron-positron dominated jet, based on standardsynhrotron self-absorption theory. The question remains, however, whetherbased on a small sample of jets, a laim an be made over the matter ontentof jets in general.There are many indiations that magneti �elds are present within thejet. The most obvious is the synhrotron emission. Perlman et al. (1999;2002) have done extensive researh synhrotron emission, and polarizationof the M87 jet. They report high polarizations that suggest highly orderedmagneti �elds. Herrnstein et al. (1998) found for the disk in NGC4258 anupper limit for the magneti �eld strength in the toroidal omponent of BT �300 mG. 5



Figure 1.3: Polarization measurements of the M87 jet in the radio (lower) andoptial (upper), taken from Perlman et al. (1999). The two false-olor representa-tions shows the total ux and the total degree of polarization for the optial andthe radio emission.Super-luminal motions of 3�6 have also been observed in the ase of jetejeted by AGN (for M87 by Biretta et al. 1999) and also by miro-quasars(Mirabel & Rodriguez 1999). This super-luminal motion is the result of aprojetion e�et: When matter moves with veloities lose to the speed oflight in the diretion of the observer, a transverse apparent veloity an beobserved that exeeds that of light. The fat that these type of jets have thesevery high veloities distinguishes them from their low-veloity ounterpartsaround YSOs. If the super-luminal motion observed is interpreted as theplasma motion itself, this implies high �-fators, whih needs a relativistitreatment of the jet struture. These high veloities imply for a hydromag-netially driven jet, that the poloidal eletri �elds will play a relevant rolein the fore-balane, (EP / �BP ), whih is a relativisti e�et. Therefore arelativisti treatment of these jets is inherently di�erent from a Newtoniantreatment.
6



1.2 From observations to theoryMany e�orts have been made to explain the origin of these jets. Initially amehanism to ollimate the jet by gas pressure was suggested by Blandford& Rees (1974). They proposed that external gas pressure ould reate a 'deLaval nozzle' through whih hot gas might be hanneled outwards into a su-personi ow. The high pressures needed to obtain this ollimation on a verysmall sale would ool rapidly, and should be observable. This has not beenobserved, so its absene would rule out this model (Krolik 1999). Althoughradiation fores ould drive a wind, one one gets to mildly relativisti speeds,a medley of e�ets make further aeleration by a direted omponent of ra-diation extremely ineÆient (Phinney 1987; Ike 1989). Blandford & Payne(1982) proposed a mehanism to ejet matter from the disk into its magneto-sphere. When gas is in balane between gravitation and entrifugal foreswhen poloidal magneti �elds are present, this leaves the possibility for amagneto-entrifugal instability. If the disk is magnetized, and has a poloidalmagneti �eld that makes an angle < 60o from the disk plane, (see Fig. 1.4)Blandford & Payne (1982) found that the gas may slide along the �eld linesaway from the disk equator and then beomes entrifugally dominated lead-ing to aeleration of the gas away from the entral objet. This mehanismis not only a possible mehanism of the initial aeleration of the gas, it alsois a mehanism to remove angular momentum of the aretion disk, allowingit to arete onto the entral objet. In order to desribe these outows,a hydromagneti desription is required. The magneti �elds observed (seeSetion 1.1) in the jets also provide good support for this idea. Althoughtheir presene does not neessarily imply their dynamis relevane in the jet,the fat that they theory needs them for the jet inititation and aelerationand that are observed does give a good argument for the hydromagnetiharater of the jets.The model that has emerged from these observations and has beomewidely aepted, is as follows: A entral objet (YSO, blak hole) is sur-rounded by a magnetized aretion disk (see Fig. 1.5). Matter is lifted fromthe disk into the magneto-sphere and aelerated along the �eld lines. Theinitial wind then ollimates into the jet, either due to self-ollimation or tothe ambient gas pressure. There are a lot of open questions still: How toollimate and aelerate a low-veloity wind into a high-veloity ollimatedjet? How to lift the matter from the disk into the magneto-sphere? How isthe magneti �eld generated inside the disk, or is it the �eld of the entral7



Figure 1.4: Equipotential surfaes for a 'bead on a wire' (plasma along mag-neti �eld line), orotating with the Keplerian angular veloity at a radius r0,whih is released from rest at r0. The equation for the surfaes is � (r; x) =�GMr0 [1=2� rr0�2 + r0(r2+z2)1=2 ℄ = onstant. These surfaes are equal intervals of� (r; z). If the wire makes an angle of less than 60o with the equatorial plane, theequilibrium is unstable (taken from Blandford & Payne 1982).objet? How stable is a hydro-magneti driven jet? In this thesis I will fouson the �rst question. Before presenting the work that I have done for mygraduation projet with Christian Fendt (AIP, Potsdam), I �rst give a briefreview on the work that has been done in the �eld.1.3 Review on models of (relativisti) MHDjetsThere has been done a great amount work of modeling (relativisti) jets. Abrief overview will be given here of the di�erent approahes whih have beenused.The types of studies that have been done an be divided broadly into sta-tionary and time-dependent studies. An approah to fully self-onsistentlydesribe the initial formation and then the ollimation, propagation and sta-8
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Figure 1.5: A shemati model for the jet struture: A entral objet, surroundedby a magnetized aretion disk. The gas lifts from the disk and moves along thepoloidal magneti �eld lines and ollimated into a narrow jet.bility of the jets would of ourse need a time-dependent model. The regionsfrom the initial wind formation out to the ollimated jet struture spans anenormous spatial range, what makes it diÆult, even nowadays, to solve thisompliated and time onsuming problem. Beause these problems have tobe solved numerially and due to the lak of omputational power only smallregions above the disk an be simulated and typial time-sales of these sim-ulations only span up to one rotation of the outer part of the disks, whihis too little in order to address the stability of the jet formation proess. Inorder to study the jet on global sales the problem is often simpli�ed, basedon reasonable argumentation, by assuming the jet to be stationary. Beausethis assumption is made for the work presented in this thesis I will mainly9



give a review narrowed down on the stationary models.Stationary models The researh done on stationary hydro-magneti drivenjets has been onerned mainly with onsidering the ross-�eld fore balane,known as the Grad-Shafranov Equation (GSE), and the Wind-Equation (alsoknown as the Bernoulli Equation), that desribes the energy onservationalong the ow lines.Blandford & Payne (1982) started out with the assumption that the ge-ometry of the jet was self-similar. This ould be used to redue the ompli-ated GSE into a set of ordinary di�erential equations. Self-similarity an bemotivated by assuming a power-law distribution for various physial quan-tities (gas density, pressure, and magneti �eld distribution). In the ase ofa Keplerian disk, this holds quite well lose to the disk surfae. Their ap-proah was extended by Li et al. (1992) for relativisti jets. A general resultof the self-similar approah is that the jet tends to re-ollimate in the aseof high fast-magnetosoni Mah numbers. This has been proven to be anartifat of the self-similar assumption (Ferreira 1997). Pelletier & Pudritz(1992) dropped the self-similar Ansatz and took into aount the gas pres-sure. Although their solutions were two-dimensional, the regimes below theslow-magnetosoni point and the region beyond were treated separately.Another self-onsistent approah to solve the GSE was onduted by Li(1993). By starting with an initial ux-�eld distribution at the base of thejet, a set of ux �elds was onstruted by onsidering loally the fore-balaneand onserving the onserved quantities: the mass ow along the ux surfaes� (	), the total energy E (	) and the angular momentum per unit densityL (	).Lovelae et al. (1991, 1993) proposed a parameterization of the ylin-drial radius in terms of the jet radius, whih was hosen together withseparation of variables. This, however, did not onsider the loal-fore bal-ane desribed by the GSE. Contopoulos & Lovelae (1994) returned to theself-similar Ansatz and presented an exat solution by onsidering the loalfore-balane. Contopoulos (1995) also proposed an alternative driving meh-anism for jets, in absene of large poloidal �elds. In this ase the magneto-entrifugal mehanism by Blandford & Payne does not work, and the matterthen an be aelerated by the pressure gradient of strong toroidal �eldsprovided by the aretion disk.Heyvaerts & Norman (1989) derived analytially that axisymmetri MHD10



ows enlosing a net poloidal urrent will ollimate to a ylindrial shape inthe asymptoti region far away from the ow origin. This has been provedlater in the ase of relativisti jets as well by Chiueh et al. (1991). Theresulting one-dimensional version of the GSE has been studied by Appl &Camenzind (1993). Instead of a self-similar approah, they assumed the owto be fore-free, i. e. the eletromagneti fores dominate the inertial fores.They found that the jet struture ould be haraterized by a ore-radius,and that most of the magneti ux and eletri urrent lies within this oreradius. This approah was extended by Fendt (1997) for di�erential rotationof the ux surfaes. It was found that jets with di�erential rotating ux-surfaes will have narrower jets in terms of the asymptoti light ylinder (seeSetion 2.2).Okamoto (1992) investigated the possibility of energy and angular mo-mentum extration from a fore-free blak hole magnetosphere due to a wind.He derived an analytial expression that ouples the the poloidal urrentI (	) and the �eld rotation 
F (	). This work was based on the idea Bland-ford & Znajek (1977) proposed, that fore-free magneti �elds oupled to afast rotating blak hole may lead to extration of energy and angular mo-mentum by a pure eletro-magneti proess (Blandford-Znajek mehanism).The most general treatment (but not full solutions) of the GSE inludinginertial terms lose to a blak hole has been done Nitta et al. (1991) andBeskin & Pariev (1993). Takahashi et al. (1990) obtained solutions of theWind-Equation in Kerr metri, mainly disussing the aretion ow. Thishas been extended by Fendt & Greiner (2001) disussing the leading param-eters of Kerr metri a and M on the ow aeleration.Two-dimensional stationary models Two-dimensional solutions for theGSE have been alulated by amongst others Sakurai (1985). These werenon-relativisti solutions inluding inertial terms, but for a slow-rotatingstar (initial radial outow, Sakurai 1985) and disk (split-monopole like initialon�guration, Sakurai 1987). These, however, show a low degree of ollima-tion, mainly due to the slow rotation. For relativisti fore-free MHD winds,Camenzind (1986,1987) developed a method, based on a �nite elements ap-proah, in order to solve the axisymmetri GSE. Although the solutionswere two-dimensional, the regularity ondition at the light surfae were nottreated orretly. These were extended by Fendt et al. (1995, 1997) to al-ulate the global solution for highly magnetized stars (Fendt et al. 1995)11



and for rotating blak holes (Fendt 1997). Also the regularity ondition wastreated properly. Fendt & Memola (2001) inluded, in a speial relativistiapproah, the di�erential rotation terms of the ux-�elds. Bogovalov (1997)has obtained stationary solution for a relativisti MHD wind, by solving thetime-dependent problem. Also he �nds solutions with only weak ollima-tion. Reently Heyvaerts & Norman (2003) presented a general and globalsolution for non-relativisti MHD jets and winds inluding inertial terms (apolytropi gas pressure was assumed). Here also the return urrent is takeninto aount. They found that for winds, where the kineti energy dominatesat in�nity, the magneti surfaes fous into exponential paraboloids and for aPoynting ux dominated wind, the surfaes ollimate into nested ylindrialsurfaes. Their approah takes only onstant rotation of the ux-surfaesinto aount.1.4 Topi of this thesisThe main purpose of this thesis is to alulate the stationary axisymmetristruture of a hydromagnetially driven relativisti jet. I will fous mainlyon the ollimating regime of the jet (from the region at the disk/blak hole,where plasma gets lifted into a wind, up to the fully ollimated asymptotijet). The struture will be alulated by onsidering the fore-free loal forebalane aross the surfaes of onstant magneti ux. The two approahespreviously done by Fendt (1997; from now on F1997a), who solved the ax-isymmetri struture inluding a Kerr metri of the blak hole, and that ofFendt & Memola (2001; from now on FM2001) who alulated the axisym-metri struture in the speial relativisti regime, but inluding di�erentialrotation term of the magneti �eld lines, will be ombined in this approah.The di�erential rotation is needed beause as the magneti �eld emanatesfrom the aretion disk it is likely to be rotating di�erentially. For a spinningblak hole, its inuene on the harater of the eletromagneti �elds has tobe taken into aount. This ombination also allows for a onsistent salingof the jet-struture with the mass of the blak hole. This will be done a-ording to the top-down approah adopted by FM2001 for their alulations.The method to solve the fore balane is based on a �nite element solver,whih has been developed for this purpose by Camenzind (1987), Haehnelt(1990), Fendt (1994, 1995, 1997) and Memola (2001).The struture of this thesis is as follows: In Setion 2 the assumptions12



about the physis of the gas will be given. Also the Grad-Shafranov Equa-tion (GSE), whih desribes the loal fore-balane aross the surfaes ofonstant magneti ux, will be derived. The method used to solve the GSE,inluding the neessary boundary onditions and the setup of the model, willbe desribed in Setion 3. In Setion 4 the ode developed for solving the�nite element method will be explained and will be tested, by omparing theresults with the results previously obtained by F1997a and FM2001. Finallythe method developed in this thesis be disussed in Setion 5. Also a set ofpossible interesting follow-up studies will be disussed. These inlude: 1) Analternative bottom-up approah to solve the GSE. 2) Calulating the Wind-Equation, the fore-balane along the alulated magneti ux-surfaes, andthereby obtaining parameters suh as �nal veloities of the ow, enablingomparison of the model preditions to observed veloities. 3) Using thealulated magneti ux-surfae struture to alulate the polarization ofsynhrotron emission, that also might make omparison of the model withobservations possible. Finally I will give a onlusion in Setion 6.
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Chapter 2Magnetohydrodynami Jets
2.1 Model assumptionsTo desribe the fore-balane in the jet, the following assumptions have beenmade:Blak hole -Kerr metri- Beause the jet originates lose to the entralblak hole, it seems appropriate to inlude a general relativisti desriptionof the spae-time. The inuene of the blak hole on the spae-time hangesthe behavior of the eletromagneti �elds. A 3+1 split of the spae-time(Thorne & MDonald 1984) around the blak hole, with a mass M and aangular momentum per unit mass a = JM , was adopted whih is desribed bythe following line-element in Boyer-Lindquist oordinates (Boyer & Lindquist1967) ds2 = �22dt2 � ~!2 (d�� !dt)2 � ��2=�� dr2 � �2d�2 (2.1)Here t denotes a global time, in whih the system is stationary, � is theangle around the axis of symmetry (the polar axis). And r; � are similar tothe Eulidean spherial oordinates. The parameters of the metri are givenby �2 � r2 + a2 os 2� � � r2 � 2GMr=2 + a2�2 � (r2 + a2)2 � a2�sin 2� ~! � (�=�) sin �! � 2aGMr=�2 � � �p�=�14



Where ! is the angular veloity of the di�erentially rotating spae, orthe angular veloity of an observer moving with zero angular momentumat in�nity distane from the blak hole (ZAMO), � = (d�=dt) is the red-shift funtion, desribing the lapse between the proper time � in the ZAMOsystem to the global time t. The ~! orresponds to the R omponent ina ylindrial oordinate system (R;Z) for r ! 1. This split allows for adesription of the magneti and eletri �elds in a similar way to that in aat Minkowski spae-time. The angular veloity of the blak hole is given by
BH = 3 (a=2GM) �GM=2 + [(GM=2)2 � a2℄1=2��1. We adopt throughoutthis thesis for the angular momentum per unit mass a = 0:8M .Ideal magnetohydrodynamis: Our model is based on the assumptionof ideal magnetohydrodynamis (MHD). MHD desribes the dynamis of aonduting uid in the presene of magneti �elds. Instead of treating eahindividual partile, MHD treats the dynamis of the average over a wholeensemble of partiles. This ensemble an be onsidered as being a neutrallyharged uid, if harge separation anels out on sales larger than the typialDebye length sale.Ideal MHD onsiders the plasma ondutivity to be in�nite and di�usiveproesses are negleted. A result of this assumption is that the ux �eld linesare 'frozen' into the plasma (the ux �elds move with the plasma).The dynamis of a plasma under these assumptions are given by Maxwell'sEquations (Eq. 2.2-2.5)r^ (�B) = 4� �j� (E � r!) ~!e�̂ + �E�t (2.2)r^ (�E) = (B � r!) ~!e�̂ � �B�t (2.3)r �B = 0 (2.4)r �E = 4��e (2.5)the equation of ontinuity(N�);� = (nu�);� = 0 (2.6)and the equation of motion 15



T ��;� = �T ��M + T ��em�;� = 0: (2.7)Stationarity and axisymmetry The problem is simpli�ed by assumingaxisymmetry and stationarity. Beause observations show that jets are gener-ally ollimated almost into a ylindrial shape and the time sales for typialrotations of the magneti �eld lines in the disk are > 104 than the timesales for the jet-propagation, the assumption of axisymmetry is reasonable.The dynami time sales for the ollimation of the jet are muh shorter thanthat of the dynami time-sales of the propagation of the jet, and thereforestationarity seems a reasonable assumption as well. The advantage of theseassumptions is that the problem, as we will show, is now onstrained to a2-D problem and has beome muh easier to solve.It must be noted that although observations of jet-knots show asymme-tries and time-variability whih would seem to ontradit our assumptions,we are primarily interested in the ollimation and the global struture of thejet-ow, and therefore think the assumptions of axisymmetry and stationar-ity are valid in this ase. However, ultimately the assumption of stationaritywould have to be modi�ed.With the assumption of axisymmetry, a magneti ux-funtion an bede�ned 	 (r; �) = 12� Z BP � dA (2.8)BP = 1~!	 ^m (2.9)where the ux is taken through a loop of the Killing vetorm = ~!2r�. Inthe same way the poloidal urrent is de�ned by the urrent density measuredthrough the same loop I = � Z �jP � dA = � 2�~!BT (2.10)The assumptions of axisymmetry and stationarity lead to onserved phys-ial quantities as well:First, stationarity implies a onservation of the mass ow rate _N alongthe ux surfaes 16



� (	) = d _Nd	 (2.11)Seondly, axisymmetry gives a onservation of the angular veloity of the�eld line (Ferraro's iso-rotation parameter 
F (Ferraro 1937)) that an bederived from the derivative of the time-omponent of the vetor potential,
F (	) = � (dA0=d	). In the speial relativisti ase, this an be thoughto� as the veloity of the gas minus the slide along the �eld lines
F (	) = � 1R  v� � � (	)� B�! (2.12)The third onserved quantity is the total angular momentum per unitdensity L (	) = �0��+ B24�n1A lut � ut (1� 
F l)4�� B� (2.13)Further the total energy is onservedE (	) = �0��+ B24�n1Aut � ut (1� 
F l)4�� Bt (2.14)with u = (ut; ur; u�; u�) the four veloity vetor.Fore-free approximation For the high veloities observed in highly rel-ativisti jets, a high magnetization (� >> 1) of the jet is needed (see forexample Fendt et al. 1996). Here � quanti�es the magneti ux in terms ofmass ux (Mihel 1969) � (	) = 	max4��� (	)R2L (2.15)For a fore-free jet the urrent density I (	) beomes a onserved quantity.In the ase of high magnetization the inertial terms will be weak omparedto the magneti terms. We assume that the inertial terms an be negletedwith respet to the magneti fores when alulating the ross-�eld forebalane in the ollimating regime. This limit is alled the fore-free limit.The equation of motion redues to 17



0 = �eE+ 1 j ^B (2.16)To fully desribe the magneti jet formation this assumptions breaksdown, beause the ollimated non fore-free jet lies beyond the Alfv�en andfast magnetosoni surfaes, where the plasma kineti energy dominates themagneti energy, whih ontradits the assumption of fore-freeness. Alsothe initial aeleration of the gas lifted from the aretion disk annot bedesribed by a fore-free on�guration.Numerial alulations of the plasma motion along the �eld show that, fora high magnetization, the Alfv�en Mah number remains relatively low. Thusthe inertial urvature term should not play a dominant role. Contopoulos &Lovelae (1994) found from self-similar solutions that the entrifugal foresare dominated by magneti fores.It is therefore assumed that the alulated ollimating jet struture withthe assumption of fore-free will not hange dramatially if inertial termswere to be inluded.2.2 Grad-Shafranov Equation (GSE)The Grad-Shafranov Equation (GSE) desribes the fore-balane aross theux-�elds1. In order to derive the GSE, the normal vetor perpendiular tothe ux-surfae is introdued n = � r	jr	j (2.17)the toroidal part of Amp�ere's equation (Eq. 2.2) an be rewritten as4��jT = r^ (�BP) + (EP � r
F ) ~!bfe�̂= r^ � �2�~!2r	 ^ ~!e�̂�� (EP � r (
F � !)) ~!e�̂ +(EP � r
F ) ~!e�̂= r	 �r � ~!e�̂� �2�~!2 � ~!2�e�̂r � � �~!2r	�1This derivation follows that of Jensen (1997)18



+ 12� �~!e�̂ � r�� �~!2r	�� �2�~!2 (r	 � r) ~!e�̂+
F � !2�� (r	 � r (
F � !)) ~!e�̂ � 
F � !2�� (r	 � r
F ) ~!e�̂= � ~!2�r � � �~!2r	� (
F � !)� � r	 � r (
F � !)� d
Fd	 jr	j2! e�̂= 4��j�̂e�̂ (2.18)The only non-vanishing terms are�eEP + jP ^BT + jT ^BP = 0sine ET = 0, jPkBP, and jTkBT. The �rst omponent is taken fromGauss's law (Eq. 2.5)4��e = r �EP = �r � �
F � !2�� r	��eEP = 14� �r � �
F � !2�� r	�� 
F � !2�� r	 (2.19)jP ^BT =  e�̂ ^ rI2��~! ! ^ �� 2I�~!e�̂�= 1� (�~!)2 h��Ie�̂ � e�̂�rI � ��Ie�̂ � rI� e�̂i= � 1� (�~!)2 IrI (2.20)jT ^BP = �j�̂e�̂� ^  r	 ^ e�̂2�~! !19



= �j�̂e�̂ � e�̂2�~!�r	� �j�̂e�̂ � r	� e�̂2�~!= 12�~!j�̂r	 (2.21)4��j�̂r	 = ��~!2� �r � �
F � !� r	�� 
F � !� r	+ 8��~!IrI (2.22)4��j�̂ = ��~!2� �r � �
F � !� r	�� 
F � !� + 8��~!I dId	= � ~!2�r � "(
F � !)2� r	# + ~!2� (
F � !)� r	 � r (
F � !)+ 8��~!I dId	 (2.23)r � " �~! � (
F � !)2� !r	#+ (
F � !)� d
Fd	 jr	j2+ 16�2�~! I dId	 = 0 (2.24)The Grad-Shafranov Equation with di�erential rotation of ux-�elds thenbeomes ~!r � ��D~!2r	� = ~!! � 
F�2 
0F jr	j2 � 1�~! 42 II 0 (2.25)with D = 1 � (~!=~!L)2 where ~!2L = (��= (
F � !), the positions of thetwo light surfaes. The gradients, expressed in terms of the Boyer-Lindquistoordinates are r =  �(r; t)� (r; t) ��r ; 0; 1�(r; t) ���! (2.26)We are left with Eq. 2.29, whih is a paraboli 2-D non-linear partialdi�erential equation, with two free funtion 
F (	) and I (	) that have tobe spei�ed. Note that although the equation is two-dimensional, the fore-balane desribed is a fully three-dimensional balane, whih is redued by20



the assumption of axisymmetry (this is ommonly alled a 2.5-D solutioninstead of a 2-D or 3-D solution). This equation redues for a onstant 
F ,and in the speial relativisti regime, to the well-known Pulsar Equation(Mihel 1973; Charleman & Wagoner 1973)
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The GSE an be made more transparent by showing the di�erent meh-anisms ontributing to ollimation of the jetn � (BP � r) BP4� �1�M2A � x2
2F� = �1� x2
2F� r?B2P8� + r?B2�8�+r?P +  B2�4� � �u2�! r?xx � B2P
F4� r? �x2
F� (2.27)The terms in the equation, whih are indiated in red, are the inertialterms: the de-ollimating entrifugal fore due to the motion of the mat-ter along the urved poloidal �eld line, the gas pressure gradient, the de-ollimating due to the entrifugal fore of the rotating plasma. For a fore-free jet the balane is determined solely by the magneti fores, so the ur-vature of the poloidal �eld lead to a tension fore, also the poloidal magneti�eld pressure redued by the pressure gradient of the eletri �eld. Thereare the toroidal magneti pressure gradient and the ollimating e�et of thetoroidal �eld tension. The last term ombines the tension of the urvedpoloidal �eld and the e�et of the spae harge density.If the fore-free assumption is made the following balane between olli-mating fores (on the l. h. s. ) and the de-ollimating fores (on the r. h. s. )beomesn�(BP � r) BP4� +B2P
F4� r? �x2
F�+x2
2Fr?B2P8� = r?B2P8� +r?B2�8� +B2�4� r?xxLight surfaes The light surfaes were already briey mentioned before.For our stationary fore-free approah, the GSE in Kerr metri has two sin-gular surfaes, de�ned by ~!2L = �� �
F�!�, whih are typial features for arelativisti treatment. The meaning of these surfaes an be understood bythinking of the magneti �elds ux-surfaes rotating at an angular veloity
F (	). These angular rotations an be expressed as a toroidal veloity likev� = ~! (r; �) 
F (	 (r; �)). When this toroidal veloity reahes the speed oflight v� = ~! 
F =  , this gives the singular surfae, hene the name. Notethat the ux-�elds represent no physial objet, and therefore the veloityorresponding to 
F an exeed the speed of light. There is an inner surfae,near the blak hole, whih is due to the frame-dragging e�et of the metri,and outer surfae far away from the blak hole. In the asymptoti region22



were the blak hole's inuene is negligible and ux surfaes are ollimatedinto ylinders, the light surfae is also alled (asymptoti) light ylinder.As the eletri �eld ontributions sale with the asymptoti light ylinderEP = � RRLC�BP , the light surfae is also an indiation where the relativistie�et beome important.2.2.1 Normalizing the GSEThe GSE is further normalized and made dimensionlessr , RLCr ~! , RLC~!! , (1=RLC)! 
F , (1=RLC) 
Fr , (1=RLC)r 	, 	max	I , ImaxIHere RLC denotes the asymptoti light ylinder. The oupling onstant,with parameters typial for AGN's, in the soure term now beomesgI = 4I2maxR2LC	2max = 4� Imax1012 A�2 � RLC1016 m�2 � 	max1033 Gauss��2The normalized GSE beomes the following equation~!r � ��D~!2r	� = ~!! � 
F� 
0F jr	j2 � gI�~!II 0 (2.29)Note that only the seond term in the soure term has the oupling on-stant gI (indiated in red) whih depends on Imax, RLC and 	max, the termdue to angular rotation of the ux surfaes has not.It will show out later in this thesis, that espeially the normalization ofthe 
F will pose a problem in the method we adopt to solve the GSE. Theadvantage of normalizing with respet to the asymptoti light ylinder is thatthe normalized GSE an be used to study more general solutions for jets, be-ause these solutions are then in terms of the dimensionless asymptoti lightylinder, whih an be saled, in priniple, to any physial sale. The mainproblem is, when trying to math this dimensionless solution to a physialsale, the physial saling of the asymptoti light ylinder follows from the 2-D solution. But to solve the 2-D solution, it seems that the saling is neededbeforehand. This problem will be disussed in the next setions.23



From now on we normalize  = 1, and G = 1. The gravitational radiusthen beomes Rg = MG2 = M . By doing this, the spatial sales of the jet anbe expressed diretly into the mass of the entral blak hole.

24



Chapter 3Solving the Grad ShafranovEquationThe GSE an be solved numerially by using a �nite element ode with the'Galerkin Ansatz' (see Appendix A for full detail). This method an solveparaboli non-linear di�erential equations when a set of boundary onditionsis given on a hosen grid. Therefore an appropriate set of 'physial' boundaryonditions needs to be spei�ed in order to solve the equation. Also thetwo free funtions 
F (	) and I (	) have to be spei�ed. There are twoapproahes how to do this. The �rst, a top-down approah will be desribedin this setion and used in the rest of this thesis. A seond bottom-upapproah will be disussed in x5:2.3.1 Regularity ondition at the light surfaeAt the light surfae, the GSE beomes singular (at D = 1 � � ~!~!L�2 = 0).In priniple singularities always pose a problem when solving the equationsnumerially. It would be useful to have the light surfae at the boundary. Inthat ase the boundary onditions along the light surfae have to be spei�ed.On loser inspetion, the GSE shows to have an intrinsi boundary onditionalong the light surfae. At the light surfae the GSE redues to�~!rDr	 = ~!! � 
F� 
0F jr	j2 � gI�~!II 0 (3.1)With the normal on the boundary de�ned as n = � rDjrDj this regularity25



ondition for 	 is atually equivalent to an inhomogeneous Neumann-typeboundary ondition�	�n = � ~!jrDj ! � 
F�2 
0F jr	j2 + 1jrDj gI�2 II 0 (3.2)This o�ers the possibility to solve the struture of the ux-surfaes in twoseparate regions: 1) the inner region inside of the light surfae and 2) theouter region outside of the light surfae. Both of these regions havie the lightsurfae as a boundary.An estimate for whether the light surfae lies within the jet so that thisdistintion an atually be used an be made by assuming a Keplerian ro-tation of the magneti ux surfaes 
F (r) = 1r3=2+a / r�3=2. For the lightsurfae the relation rl = 
�1 (rdisk) = r1:5disk holds. For the light surfae tobe inside the jet, the light surfae radius must be less than the jet boundaryxjet = fexprdisk (where fexp is the expansion rate of the jet and rdisk the outerdisk radius). Junor et al. (1999) measured for the M87 jet a lower limit forthe expansion rate of fexp � 3:3 (fully ollimated at 200 Rg and at the upperlimit of the un-ollimated region of 60 Rg). For the light surfae to be insideof the jet this implies r1:5disk < fexprdisk. This gives rdisk < f 2exp � 10 Rg whihis a lower limit, beause the atual formation region an be smaller than theresolved 60 Rg. Although the disk size we adopt is somewhat smaller, typialestimates for the expansion rate is about fexp � 100. In that ase it is highlylikely that the light surfae will be inside the jet, and the distintion betweenan inner region and outer region an be made.3.2 Boundary ondition at the jet axisWe assume that there is no magneti ux on the jet axis (R=0). On the jetaxis a Dirihlet boundary ondition is hosen of 	 = 0.3.3 Jet surfae boundary onditionThe outer surfae of the jet is de�ned at 	 = 1. For a ux distribution thatis saturated at 	 = 1, this is the last ux-surfae that ontains all of thepoloidal magneti �eld. For the jet surfae, 	 = 1 is hosen as the Dirihletboundary ondition. In the next setion the determination of the shape ofthe boundary will be explained. 26



3.4 Disk and blak hole boundary onditionsThe magneti �eld distribution along the disk is not well known. Therehave been some studies to alulate the disk struture around a blak hole(e. g. Khanna & Camenzind 1992; Kudoh & Kaburaki 1996; Koide, Shibata& Kudoh 1998). Khanna & Camenzind (1992) obtained for a stationaryaxisymmetri thin disk a solution for the ux distribution along the disk:	 / e�k2 R D(r0)dr0 (See Fig. 3.1).

Figure 3.1: Calulated ux distribution at the surfae of an axisymmetri thinmagnetized aretion disk around a blak hole (taken from Khanna & Camenzind1992)As mentioned before, it is possible for a blak hole to have a magneto-sphere (Blandford & Znajek 1974; Okamoto 1992; Kommissarov 2003). Soit is possible for some magneti ux to emerge from the blak hole's diretenvironment. Beause this proess is yet poorly understood, we only assumethat some fration of the total ux 	BH omes from the blak hole's magne-tosphere. As boundary ondition we take for now a homogeneous Neumannboundary ondition. There are some indiations that the exat distributionlose to the disk and entral objet do not have a large inuene on the globalsolution, so for now these boundary onditions seem reasonable.The boundary ondition for the disk was hosen as27



	(x) = 	BH + (x� xin) = (A� xin)m1 + (x� xin) = (A� xin)m (3.3)with A = xdisk � xin(	BH)�1=m + xin (3.4)This funtion is shown for di�erent 	BH in Fig. 3.2 in order to ompareto the results of Khanna & Camenzind (1992).

Figure 3.2: The boundary ondition for di�erent 	BH withm = 2, for a disk withxin = 2 Rg and xdisk = 20 Rg.3.5 Asymptoti solution for the speial rela-tivisti GSEAppl & Camenzind (1991) showed that for a onstant 
F , the boundary ofthe jet, de�ned at 	 = 1, is known if some distribution I (x) is assumed.With the Ansatz of I (	) = �1� e�b	� = �1� e�b� the jet boundary is thengiven by xjet = apeb � 1. For a di�erentially rotating ux distribution, thisposition is not known in advane, so the GSE has to be solved somehow in28



order to obtain this position. In order to obtain the boundary onditionsalong the ollimated part of the ow the asymptoti version of the GSE isused.The asymptoti behavior of a jet an be analyzed by onsidering the ross-�eld fore balane of the relativisti GSE in the asymptoti region (regionwhere z >> R )Rr� 1� (R
F (	) =)2R2 r	! = 42 1R dd	I2 (	)�Rjr	j2 12 dd	
2F (	) (3.5)By assuming perfetly ollimated ylindrial or onial ows, the urva-ture of the poloidal �eld lines vanishes, and onsequently the pressure gra-dients must be balaned by the radial direted fores and the toroidal pinhfore (Heyvaerts & Norman 1989; Chiueh et al. 1991). An analysis of theasymptoti behavior of the Grad-Shafranov equation has been done for on-stant rotation (Appl & Camenzind 1991,1993) and for di�erential rotation ofthe ux �elds F1997b. For high ollimation (�x >> �z), the 2-D GSE, anbe redued to a one-dimensional equation. Beause 	 (x; z) ! 	(x), theonserved quantities 
 (	) and I (	) an be expressed as funtions of x. If itis further assumed that the ux distribution is monotonous, the derivativeswith respet to 	 beome �=�	 ! (d	=dx)�1 (d=dx). With these assump-tions, Eq. 3.5 redues to a ordinary di�erential equation in the �rst order inthe derivative (d	=dx)2�1� x2
2F� ddx  d	dx !2 +  4x � 2x
2F � x2d
2Fdx ! d	dx !2 + gdI2dx = 0 (3.6)Beause (x�2d	=dx)2 is related to the magneti pressure of the poloidal�eld (�	=�x = xBz), this equation an be rewritten as�1� x2
2F� dydx � 4xy  
2F + x4 d
2Fdx ! = � g8�x2 dI2dx (3.7)This has the formal solutiony (x) = 18� 1M (x) Z 1x 1w2 11� w2
2F (w) ddwI2 (w) �M (w)dw (3.8)29



with M (x) = exp [Z x1 � 4w1� w2
2F (w) � f (w)! dw℄ (3.9)and f (x) = 
2F (x) + 14x ddx
2F (x) (3.10)Beause d	(x)dx = xq8�y (x) (3.11)The asymptoti ux-distribution an be alulated by integrating y (x)	 (x) = Z x0 vq8�y (v)dv (3.12)The jet boundary xjet is de�ned at the last ux surfae 	 (xjet) = 1 andis therefore known. This will be used in order to solve the 2-D GSE.3.5.1 Free funtions 
F (x) and I (x) of the GSEAs already mentioned, the funtions 
F (	) and I (	) have to be hosenwhen solving the GSE. As shown in the previous setion, when trying to �nda solution by integrating the asymptoti GSE one has to presribe 
F (x)and I (x) instead of 
F (	) and I (	). This type of asymptoti solution hasbeen studied before by Camenzind (1986), Appl & Camenzind (1993) andF1997b.They adopted a bounded urrent distribution (often used in fusion re-searh) I (x) = B (x=a)n1 + (x=a)n (3.13)The parameter a represents the radial sale on whih the urrent rises,also alled the 'ore radius' of the jet and B = 11�e�b where b is the 'pinh'of the urrent with respet to the ux �elds. For onstant rotation, thisleads to the analytial solution for the asymptoti ux distribution as Appl& Camenzind (1993) found 30



Figure 3.3: Current distribution I (x) = B (x=a)n1+(x=a)n for di�erent ore radii a.Shown are a = 5:0 (dashed), 1.0 (solid), 0.5 (dotted) and 0.1 (dash-dot), withB = 1. 	(x) = 1b log 1 + �xa�2! (3.14)We assume that the ux �elds orotate with the aretion disk at Kep-lerian speed 
F (r) = 1r3=2+a (the dimension of r is in Rg), the di�erentialrotation pro�le 
F (x) in the asymptoti region will be a monotonous de-reasing funtion of x as well, as ux distribution along the disk is assumedto be a monotonous inreasing funtion. To investigate the inuene of thedi�erential rotation of the ux �eld, F1997b introdued a dereasing expo-nential rotation law for the asymptoti rotation pro�le
2F (x) = eh�hx (3.15)where the parameter h is the steepness of the pro�le, and 
F is normalizedto the asymptoti light ylinder 
F (1) = 1.If the asymptoti solution 	 (x) has then been found, it an then beapplied to the 2-D GSE by reating the funtions 
F (	) and I (	) by om-bining 	 (x) with 
F (x) and I (x). This is a top-down approah, i. e. theinternal global solution of the jet is determined by the solution in the asymp-toti regime. An alternative bottom-up approah is physially more plausiblethan the top-down approah. This is beause the jet is reated at the disk,31



so it the properties like urrent- and rotation distribution will be tightly re-lated to the disk physis. The bottom-up approah diretly ouples the jetstruture to the physial proesses at the disk surfae. Unfortunately, thebottom-up approah is harder to solve than the top-down approah. In Se-tion 5:2 the problems that arise when using this approah will be disussedand a method is proposed how to solve these problems. In Setion 3:5:4 thedisadvantages of using the asymptotially determined distributions for I (	)and 
F (	) will be disussed.3.5.2 The asymptoti light surfaeIt is interesting to note that apart from the singularity at x=1, the asymptotiGSE an ontain a seond singularity. This fat has not been mentionedbefore anywhere in the literature. If the di�erential rotation pro�le fromEq. 3.15 is taken, for the singular point, the following equation holds:0 = 1� x2
2F = 1� x2eh�hx (3.16)This is by normalization automatially ful�lled at the asymptoti lightylinder x = 1, but also for h = 11�x log � 1x2�. In Fig. 3.4 the toroidalveloity of the ux �eld is shown for h = 0.2, 0.5, 0.9, 1, 2 and 3.It an be seen that for h = 2, the singularities merge at x = 1, beauseonly one solution is possible. The �rst singularity is always thought to be theboundary between the sub-relativisti jet (v� < ) and relativisti (v� > ).The origin of this seond singularity in the 1-D equation an be lari�ed ifthe 2-D equation is onsidered. As an be seen in the Fig. 3.5, the seondsingularity an be interpreted as the same light ylinder as at x = 1, afterwhih the asymptoti relativisti regime of the jet beomes sub-relativistiagain.Note that this holds for any rotation pro�le whih is monotonously de-reasing, where 
F (1) = 1 and for x > 1, 
F (x) / xn, with n � 2. Thisis a restrition to the on�guration of the relativisti jet in this model. Theux �eld that passes through the light surfae is not able to pass it for aseond time, but has to ollimate before the seond light surfae. Other-wise, this would imply a ontradition. Beause for the �rst light ylinderx
F (	) = 1. As the ux �eld rosses the �rst light ylinder, x will only in-rease. It is therefore not possible to get x
F (	) < 1 after the rossing. Soit should be possible to have a ore struture in the jet, where a relativisti32



Figure 3.4: Toroidal veloity v� = x2
2F for di�erent steepness (h = 0.2 (solid),0.5 (dotted), 0.9 (dashed), 1.0 (dash dot) and 2.0 (dash 3xdot) 3.0 (long dashes)).The line indiates the position of the regular points at x
F = 1.ore is nested inside a sub-relativisti struture. Although it has not beenmentioned in the literature on stationary work, it is interesting to note thatsimilar on�gurations have been seen in the time dependent simulations ofCasse & Keppens (2002) in a non-relativisti treatment inluding the disk.There the Alfv�eni surfae returns into the asymptoti region. As for highmagnetizations the Alf�en surfae approahes the light surfae, this would im-ply the same type of on�guration. It is not lear however, how general thistype of on�guration is.The model used in this paper is for now unable to handle suh a on-�guration, beause the distintion between an inner part (inside of the lightsurfae) and an outer part annot be made anymore and the position of thelight surfae beomes a muh more ompliated problem. We therefore fouson on�gurations that do not have a returning light ylinder. We will disussthe onsequenes of this assumption in x 5:1.
33
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RFigure 3.5: Two possible on�gurations for light surfae. On the left: The bound-ary of the jet rosses the light surfae. On the right: The light surfae 'returns'to the asymptoti region. In this ase a relativisti ore is embedded in a sub-relativisti envelope. The hathed regions indiate the regions where x 
F � 1.3.5.3 Solving the asymptoti GSETo solve the asymptoti GSE, a program was written using IDL. The numer-ial integration was done using a Romberg solver, of 5th order (e. g. Stoer& Bulirsh 1980). The two singularities posed a small problem, beause thefuntion M (x) is not de�ned at these points. This was solved by integratingeither until 0.99999 or from 1.0001. Beause the funtion within the integra-tion blows up to �1, due to the exponential, this dies o�, so as x approahes1, the integral of the part between 0.99999 and 1.0001 will not ontributemuh to the total. To test how aurate the integration routine was, theresults were ompared to the analytial solution 	 (x) = 1=b log�1 + �xa�2�by Appl & Camenzind (1993) for onstant rotation and to the numerialresults for the steepness parameter h = 0:2, and with a = 1 and B = 1by Fendt (1997). The solutions and the relative di�erenes are plotted withtheir analytial and numerial ounterparts in Fig. 3.6 and Fig. 3.7. Theresults were aurate enough. The di�erene between the analytial solutionof the asymptoti GSE and the numerial solutions were about 0:3% whihseems to be a systemati error of 0:3% probably due to the integration lim-its of 0.99999 and 1.0001. Our solutions di�ered from that of Fendt (1997)within less than 0:05%. It is not surprising that no systemati error is seen34



in Fig. 3.7, beause the integrating limits are the same as Fendt (1997) used,so almost the same systemati error will be expeted.

Figure 3.6: On the left: The values for 	num (x) (solid line) using the IDL routineand over-plotted the analytial solution of Appl & Camenzind (1991) (rosses).On the right: The relative di�erene of the (	AC �	num) =	AC. A systematierror an be seen of about 0:3% with a satter on muh smaller sales.3.5.4 Saling the 2-D solution to the entral mass ofthe blak holeFM2001 solved the speial relativisti axisymmetri Grad-Shafranov Equa-tion (GSE) inluding the di�erential rotation e�et in the soure term of theGSE. Their whole axisymmetri struture was normalized in terms of theasymptoti light ylinder radius xl. An Ansatz was made for the rotationpro�le (see Eq. 3.15) and then the axisymmetri solution ould be obtained.Their �nding was, that their adopted steepness of the rotation pro�le wastoo low to math the Keplerian rotation at the foot-points of the �eld linesin the disk.In order to use the solutions of the speial relativisti asymptoti GSE,as a boundary ondition for the general relativisti axisymmetri GSE, thissolution had to be re-normalized, beause the spatial oordinates in the gen-eral relativisti ode were normalized to gravitational radii (Rg) instead ofthe asymptoti light ylinder (xl) as was the ase with FM2001. Beausethe di�erent normalization might ause onfusion, the asymptoti solutionwill be expressed in terms of x, whih is normalized to the asymptoti light35



Figure 3.7: On the left: The values for 	num (x) (solid line) using the IDLroutine and over-plotted the numerial solution 	Fendt (x) (rosses) used byFendt (1997) (obtained using MATLAB). On the right: The relative di�erene(	Fendt �	num) =	Fendt.ylinder xl, and the general relativisti GSE is expressed in terms of r whihis normalized in gravitational radii Rg.Beause the angular veloity of the ux �elds 
F (	) is onserved along	, the rotation originating from the foot-point of the ux �elds at the disk,whih rotates at Keplerian speed, must have the same value in the asymptotipart. The Keplerian angular veloity distribution near a blak hole is givenby 
F (r) = 1r3=2 + a (3.17)with a the angular momentum per mass of the blak hole. This reduesto the Newtonian Kepler pro�le for small a=r. The adopted pro�le for theasymptoti ollimated jet is given by
F (x) = peh�hx (3.18)Beause 	 = 	 (x) is known and 
F (x) in the asymptoti region, also	 (
F ) is known. This is also true for the foot-points 	 = 	 (r) and 
F (r)are known and therefore 
F (	) jasy an be related to 
F (	) jKerr. By nor-malizing the asymptoti light surfae, the asymptoti rotation pro�le an beused in the GSE normalized in Rg (see Fig. 3.8).The question is now how from the hosen asymptoti distributions of
F (x), I (x) and 	 (x) a distribution is obtained that resembles the atual36
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Figure 3.8: Connetion the rotation distributions in the two regimes with di�erentnormalization of the rotation pro�le. At the top an exponential pro�le normalizedto 1 at the light ylinder. At the bottom a Keplerian rotation law for the disk.disk physis as losely as possible. So what kind of steepness h and whatvalue for the asymptoti light ylinder in term of gravitational radii had to beadopted to �t the asymptoti exponential pro�le to the Keplerian pro�le atthe disk. The disk size restrits the ombination of jet radius and steepnesssomewhat. Given a disk size, the fration between the maximal and minimalangular veloities for respetively the inner disk radius, and the outer diskdisk radius f
jkep = 
max
min jkep = r3=2disk + ar3=2in + a (3.19)where for rin � 2:0 the radius of the ergosphere of the BH has been taken,and rdisk is the outer disk radius where the last ux emerges. In order for theasymptoti rotation pro�le to �t a Keplerian pro�le the fration of maximal37



and minimal angular veloities in the asymptoti region must be greater orequal to that of the ux from the disk. If it is equal, all the ux solelyoriginates from the aretion disk. If it is larger, part of the ux omes fromthe ergosphere of the blak hole.f
jasy = 
max
min jasy � 
max
min jkep (3.20)or f
jasy = s eheh�hxjet = pehxjet � r3=2out + ar3=2in + a(3.21)FM2001 found a solution for a jet with h = 0:9, xjet = 2:2 xl, xin =0:05 xl and xdisk = xdisk = 0:2 xl. Relation 3.20 then beomesf
jasy = pe0:9�2:2 = 2:69 > 0:23=20:053=2 = 8:0 (3.22)In Fig. 3.9 this situation is illustrated. This easily shows, as they alreadyonluded, that the rotation pro�le they assumed was too at to �t a Ke-plerian rotation pro�le at the disk. In order to get a disk with a Keplerianpro�le one would therefore need either a steeper pro�le (higher h) or a widerjet in terms of asymptoti light radii (lower gI). This will part of the disus-sion in x 5:1. The disk physis are yet still not fully understood as well. Forpressure supported disks, the rotation will be in general sub-Keplerian. Aswe take the disk as a boundary, it is diÆult to say anything about the diskbased on our solutions. A broader parameter study of our model as well asthe bottom-up approah (See Setion 5:1) is needed in order to address thisproblem.One an ask whether it is possible to have any light ylinder radius for theasymptoti solution, when it is applied as a boundary ondition to the 2-Dproblem. Beause this radius determines how the 
F jasy is to be normalized(rl 
F (r = rl) jdisk = 1, but 
F (x = 1) jasy = 1) . Depending on the distri-bution 	 (r) jdisk along the disk, there is some 	� (r) jdisk, that ollimates inthe asymptoti regime at the light ylinder. This then gives some 
F (r) jdiskthat in its turn determines the asymptoti light ylinder radius. But whih38



Figure 3.9: Comparison of asymptoti 
F = peh�hx, with h = 0:2, gI = 2:71,xdisk = 5:0 Rg and 	BH = 0:2 and a Keplerian rotation pro�le at the disk. The so-lution of the asymptoti GSE (left top) gives some value for 	 (x), this orrespondsto a 	 along the disk (left bottom), that in turn gives the physial saling of theasymptoti rotation pro�le (right top) using a Keplerian rotation pro�le at the disk(right bottom, solid line). In the right bottom �gure, the normalized asymptotisolution (striped line) is shown to have an idea what this physial rotation law thisnormalization implies for the disk.	� (r) atually ollimates is determined again by the 2-D solution, so thisposes a problem.Let us onsider the Alfv�en point that is determined by the onservedquantities as follows: M2A = 1� 
F (	)L (	) =E (	) (3.23)In the fore-free ase (M2A << 1), the Alfv�en point approahes the lightylinder, so then 
F (	) = E (	) =L (	) (3.24)As we know, the light ylinder is de�ned as xl
F (	 (xl)) = 1 so the39



light ylinder radius is determined byxl = L (	) =E (	) (3.25)So when the distribution along the disk is known and with it the L (	)and E (	), then the asymptoti light ylinder still is not de�ned uniquelybeforehand. Beause this relation might hold for any 	� along the disk andbeforehand it is not known whih 	� ollimates exatly at the asymptotilight ylinder. This is determined by the 2-D solution.In the top-down approah the value for the asymptoti light ylinderradius xl an be hosen arbitrarily in priniple (as long as 
F (r) jmax < 
BH),but this hoie then determines the onditions L (	) and E (	) at the disk. Iffor example the physis of the disk are known, then to get the 2-D strutureof the jet, the asymptoti light ylinder has to be hosen in suh a way thatthese math, and is therefore not free of hoie. This apparent free hoieof the asymptoti light ylinder radius is a onsequene of the top-downapproah. With the alternative bottom-up approah one does not have thisproblem, as will be explained in x 5:2.3.6 Grid boundaries3.6.1 Light surfaeOne of the main problems in solving the GSE was to �nd the orret grid.Beause the light surfae is the singular surfae of the GSE (see x4:1), it isimportant that our boundaries for the inner grid as well as the outer gridfollow the light surfae as aurately as possible. The inner and outer lightsurfaes are given by ~!2L = �� �
F � ! �2 (3.26)To see what the light surfaes for a given 
F look like, this equation anbe rewritten. At the light surfae ~! = ~!L then
F (r; �) = �� (r; �)~! (r; �) + ! (r; �) (3.27)40



On the right hand side of the equation there are only parameters of theKerr metri. It is possible to alulate the family of solutions that satisfyEq. 3.27 for all (r; �). Every onstant 
F then onstitutes a ontour on thissurfae that 
F (r; �) builds. In Fig. 3.10 the ontours are shown for di�erentonstant 
F . It an be seen that for the outer light surfae, the light surfaemoves outwards for smaller 
F (a higher radius is needed in order to maintainx 
F (	 (x)) = 1). For the inner light ylinder, whih is due to the framedragging e�et of the rotating blak hole, the light surfae moves inwards forhigher 
F and approahes the blak hole surfae.For a onstant rotation of the ux �elds the light surfae an be alulatedexpliitly. This is di�erent for a di�erentially rotating ux distribution. It isonly known for a ux �eld 	 with an 
 (	) that if it rosses the light surfaeit will ross the light surfae somewhere along the known surfae of onstant
F as plotted in Fig. 3.10. At whih point along the light surfae it will rossdepends on the internal fore balane.

Figure 3.10: On the left, Inner- and outer light surfaes for di�erent 
F =0:05; 0:1; 0:2. On the right: Inner light surfaes blown up. The blak hole sur-fae and the ergosphere are indiated as well (dashed).41



The problem is that 
F is now a funtion of 	(x), whih is exatly what isto be alulated: The shape of our boundary is a result of our alulation forwhih this shape is needed. A proedure to solve this problem was proposedby FM2001: For the initial light surfae boundary the light surfae of theangular veloity of the asymptoti solution 
F;1 is taken. For this gridthe solution is alulated with the n-element solver algorithm, so 
F (	) isknown at the boundary. This boundary will di�er from the real light surfaeby D = 1 � � ~!~!F �2 = 1 � � ~!(
F (	)�!)� �2. Then the grid is hanged with�x / D (x; z)2. This proedure is repeated until D (x; z) � 0. FM2001showed that this proedure suessfully onverges to the light surfae asdetermined by a onsistent axisymmetri solution.3.6.2 Outer jet surfaeThe same problem as with the light surfae holds for the outer boundary ofthe jet. The position of the boundary has to be spei�ed in order to solvethe internal solution, but this position itself depends on that solution. Inpriniple the orret boundary an be searhed for. To have an idea where tostart, the asymptoti GSE is �rst solved. This gives the position xjet of thelast ux surfae in the ollimated asymptoti region. The orret shape ofthe boundary is the one that gives an onsistent internal solution. Whetherthe internal solution is onsistent is determined at the light surfae. This'mathing problem' was studied by Fendt (1994). The internal solution is aonsistent solution to the 2-D GSE, if at the light surfae the transition ofthe ux surfaes aross the light surfae is smooth.In order to �nd the orret solution the mathing problem had to besolved, i. e. a orret boundary for 	 = 1 had to be found onsistent withthe smooth rossing of the light surfae. We hose to parameterize the outerboundary of the jet by some general funtion as F1997b and FM2001 did. ForZ > Zyso the grid was divided evenly in dZ = (Zmax � Zyso) =nel;Z with nel;Zthe number of elements in Z diretion. Here Zyso was hosen at double theheight of the rossing of the jet boundary at opening angle �0 with the lightsurfae 2Zls;min. We start at a fully ollimated boundary down to fyso � Zyso.For the rest of the i elements the funtion Ri = Rjet � dR (i� iyso)n wastaken. The parameters Zyso, fyso, dR and n were a free hoie, enabling awide variety of shapes for the outer boundary (see Fig. 3.12).The solution of the GSE searhed for is the ombination of oupling on-42
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=1Figure 3.11: (Mis)math of the rossing ux surfaes at the light surfae. The redline indiates the light surfae. The blue lines indiate the magneti ux surfaes.There are three possible on�gurations: The �rst two solutions do ross the lightsurfae smoothly. Only the third solution has a smooth rossing of the light surfae,and therefore the boundary orresponding to the internal fore-balane.stant gI, ore-radius a, and steepness h that gives a onsistent math at thelight surfae for the inner and outer solution. Three possible situations atthe light surfae, that might our while mathing the inner solution to theouter solution, are shown in Fig. 3.11. Calulated examples of the mathingproblem will be shown in the next setion. The �rst two on�gurations inFig. 3.11 show a kink-like rossing at the light surfae, whih would requirejumps in the magneti �eld distribution whih are not present in the asymp-toti distribution. These are only due to the mismath of the adopted outerboundary with the internal solution that is de�ned by the given ombinationof oupling onstant gI , ore-radius a, and steepness h. The outer boundaryis then adjusted to have about the same shape as the internal �eld lines loseto the boundary. This adjustment is repeated until the math at the lightsurfae is found.3.6.3 Disk & blak hole boundariesAt the lower part of the grid, the disk and blak hole are taken as boundaries.The disk is assumed to be thin (Z = 0) and starts from the ergosphere(rin = 2 Rg), whih is somewhat less than the marginally stable orbit (for ablak hole with a = 0:8, rms � 3 Rg) and the disk goes out to rdisk.In priniple it would be logial to take the inner light surfae inside of the43
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is assumed that all of the magneti ux ollimates in the asymptoti region.The boundary ondition in the asymptoti regime is provided by solving the1-D asymptoti GSE of a ollimated jet struture.The grid for the inner region to be alulated is seen in Fig. 3.13. Anopening angle �o is de�ned at the disk boundary rdisk from whih the jetboundary extends to the light surfae. The grid-boundaries are given by thejet-axis, blak holes ergosphere, disk, jet boundary and the asymptoti jet.The grid for the outer region to be alulated is seen in Fig. 3.14. Anouter boundary is de�ned that starts at the rossing point from the internalregion's boundary up to the jet radius xjet in the asymptoti part.
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Figure 3.13: The inner region: Calulation for the region inside the light surfae.The boundaries are given by the jet axis, the blak hole ergosphere, the thin disk,the jet boundary given by an adopted opening angle �o of the last ux surfae, thelight surfaes and the asymptoti ollimated region.
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RFigure 3.14: The outer region: Calulation for the region outside of the lightsurfae. The boundaries are given by the light surfae, the asymptoti solutionthat de�nes xjet and the adopted outer jet boundary whih is onneted to thepoint at the light surfae where internal ux rosses it at some opening angle �0.
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Chapter 4Code Development/Testing
4.1 Developing the odeThe FORTRAN77 ode for the �nite element solver that inluded the Kerrmetri in the GSE (see F1997a) was used as a base to develop the neessaryode. The main idea behind the ode was as follows: First a non-equidistantgrid was spei�ed. Then the Dirihlet onditions were spei�ed for eah (r; �).An initial �rst guess for 	 (r; �), was given by applying the asymptoti solu-tion to the whole grid. This proved to be a good hoie for fast onvergeneof the ode. The initial solution was then used to solve the equation 6.8. Themaximal di�erene between the old and new value for 	 was then used toestimate the degree of onvergene. This proedure was repeated until themaximum di�erene j	new � 	oldjmax < �onv. We hose for the onvergingfator �onv = 1 10�4, whih gave a good, and fast onvergene of the ode.The �nal onverged solution was set on an equidistant grid of 501 � 501elements. Beause this ode was only suited for onstant 
F a number ofextensions had to be added in order to suessfully solve Eq. 2.29 inludingthe di�erential terms:The �rst step was to add the di�erential term, ~! !�
F� 
0F jr	j2, to thesoure term J (see Appendix A). The funtions of 
 (	) and I (	) wereobtained by making a spline �t of the 	 (x) and 
 (x) and also for I (x).This had to be done, beause the funtions 
 (x) and also for I (x) had werea result of numerial integration (see x3:2:3) and should be alulated inthe ode for arbitrary 0 < 	 < 1. This spline also gave their derivativeswith respet to 	, I 0 (	) and 
0F (	). The funtion 
F was normalized by47



hoosing the asymptoti light ylinder radius. This gives the normalizationfator f
 = 1=xl. In Appendix A it is shown how the jr	j2 term wasalulated. Beause the 
F is also present in the l. h. s. of Eq. 2.29 thesame spline proedure had to be applied there as well.The seond step was to inlude the iteration proedure of the positionof the light surfae. The �rst guess of the boundary for the light surfaewas initially made by alulating the light surfae for onstant 
F = 1=xl,beause this orresponds to the maximal possible 
F of the light surfaeby de�nition (see Setion 3:6:1). It turned out that for the non-onstantrotation pro�les the initial hoie of the boundary gave problems when hosentoo lose to the light surfae. Due to the initial hoie of the boundary noonvergene of the solution on this grid ould be obtained. This was probablydue to the fat that at the top, the boundary was, relative to the bottom, toolose to the real light surfae, whih gave too little room for readjustmentof the boundary during the iteration proedure. To solve this the initialboundary was shifted by an amount of �xi = 0:01xl inside, to be sure thatthe whole boundary is well inside of the light surfae. This method provedto be suessful. After eah onverged solution, for a given grid, for eah ellat the boundary orresponding to the light surfae, the value for D (r; �) wasalulated byD (r; �) = 1� (~! (r; �) [
F (	 (r; �))� ! (r; �)℄=� (r; �) )2 (4.1)Eah element at the light surfae was shifted by �x = f�D (x; y). Heref� was a hosen fator that ould be adapted during the alulation in orderto speed up the light surfae iteration. It turned out that a good and fastonvergene was obtained by hoosing f� as suh that the amount of hangewas about 10% of the D (r; �). After the shift of the outer elements, theinternal grid was rearranged as well, and then the onverged solution of theprevious step was used as an initial ondition for the alulation of the new	 (r; �). For onstant rotation, the number of iteration steps was about10-20 in order to obtain a onvergene of �onv = 1 10�4. The initial fewiteration over the new light surfae took the same amount of steps, butgradually dereased to 2-3 steps to get the same onvergene. This wasbeause when the inrement gets smaller, as the boundary approahes thereal light surfae, the onverged solution on the previous grid will be muhloser to the real �nal solution. The light surfae iteration was stopped oneD (x; y)max < 1 10�4. 48



We enountered an unexpeted problem when mathing the 1-D solutionof the asymptoti GSE to the upper boundary ondition. The height of thegrid was taken 5xl for the jets alulated in the next setions, where theasymptoti light radius was hosen xl = 10 Rg. The Kerr metri has threeparameters of inuene in the GSE, the red-shift � (r; �), the frame-dragging! (r; �) and the ~! (r; �). In the speial relativisti regime far away from theblak hole, the �rst redues to 1, the seond to 0, and the third is equalto the R-omponent in a ylindrial oordinate system. The values for theKerr parameters for di�erent heights in terms of the asymptoti light ylinderradius xl are given in Table 4.1.height (xl) � (rl; �l) ! (rl; �l) ~! (rl; �l) xl (Rg)5.00 0.9798 1:2825 10�5 9.7991 9.797810.00 0.9899 1:6249 10�6 9.8991 9.898815.00 0.9933 4:8054 10�7 9.9329 9.932720.00 0.9949 2:0229 10�7 9.9497 9.94961 1.0 0.0 10.0 10.00Table 4.1: Values for Kerr parameters at di�erent heights of the grid (for xl;1 =10 Rg)At a height of 5xl = 50 RG the light surfae has is at a distane ofxl = 9:7978 Rg and has not yet reahed its asymptoti value at xl;1 =10:0 Rg. The Table 4.1 shows that the Kerr parameters have not reahedtheir asymptoti values at this height. The question now arises whetherthe asymptoti solution, whih has been alulated in the speial relativistiregime, may be used as a valid boundary ondition for the problem alulatedin the Kerr metri. There are two options how to interpret the asymptotisolution. The �rst is to assume that both in the non-asymptoti regionas well as in the asymptoti region the �eld is perfetly ollimated. This,however, leads to some problems at the light surfae. As an be seen inFig. 4.1 that the ux surfaes that originally rossed the light surfae (at thepoint where x
F (	 (x)) = 1), now ross it bak. This is a ontradition,beause 
F (	) is onserved, so it annot possibly ross the light surfae aseond time. Therefore all the ux that is outside the light surfae must stayoutside the light surfae. It would be obvious to inrease the height of thegrid until the inuene of the blak hole beomes negligible. Beause thegrid ells should not get too elongated, to avoid numerial problems, we an49



not set our boundary at arbitrarily high Z. For these we hose to normalizethe asymptoti solution with respet to the position of the light surfae atthe top of our grid and not its asymptoti value. Beause the di�erene ofthis point to the asymptoti value is very small (less than 2%), the di�erenebetween the asymptotially normalized jet and our adopted normalizationshould be insigni�ant. This does not mean that the solution beomes lessaurate, it just implies a di�erent rotation at the disk for some 	�.
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Figure 4.1: A shemati view of the problem when applying the asymptoti dis-tribution as a boundary ondition to a region where the light surfae has notyet reahed its asymptoti value. The assumed straight ux �eld will ross thelight surfae for a seond time, whih is in ontradition with x
F (x) = 1. Theollimated ux surfaes (blue) and the light surfae (red) are indiated in this �g-ure. Note how in between the light surfae and its asymptoti value the assumedollimated �eld lines may re-ross the light surfae.4.2 Testing the odeTo test the extended new ode was applied it to the ase of onstant rotationand di�erential rotation of the ux-�elds.50



In order to obtain the onsistent solution, we adopted the the modelparameters in a spei� order. First an opening angle �0 was hosen beausethis parameter seemed to have to largest inuene on the global struture.This determined the internal solution. By assuming some outer boundary byhoosing the parameters Zyso, fyso, dR and n it was immediately apparentwhether the gI would have a possible 2-D solution with this opening angle.When an opening angle was found that had a solution for whih the outerboundary gave an almost onsistent solution, the opening angle was kept andthe outer solution was hanged until a onsistent solution was found.4.2.1 Constant rotationIn the ase of onstant rotation of the ux surfaes the analytial solutionof Appl & Camenzind (1992) was used for the asymptoti boundary on-dition in order to solve the 2-D GSE. The asymptoti form of the GSEhas, with the Ansatz that I (	) = 1�e�b	1�e�b , the analytial solution 	 (x) =1=b log�1 + �xa�2�. The jet radius is then de�ned as xjet = apeb � 1. Theparameters used originally by F1997a are given in Table 4.2. These were usedto re-alulate struture as found by F1997a. Unfortunately the parametersdesribing the outer jet boundary used by F1997a were not spei�ed in thepaper, so we had to look for the solution again.gI a b rl;1 	BH2.14 2.71 0.8 10 0.2Table 4.2: Jet model parameters as alulated by F1997a.An initial guess of the jet boundary is done by taking a initial �0 thesame as F1997a, whih was about �0 = 3=4 rad � 42o. The internal solutionshown in Fig. 4.2.To illustrate the method how the orret outer boundary was found twosolutions for di�erent boundaries are shown in Fig. 4.3. Both �gures showlearly what happens if the outer boundary (as was shown in Fig. 3.11) is toodi�erent from the boundary that satis�es the internal fore-balane. Whenthe boundary is moved more inwards (ollimates more slowly) the kinks moveupwards. If the boundary is moved outwards, the kinks move downwards.The smooth solution where the derivatives of the ux distributions in the51



Figure 4.2: The inner region as alulated for the parameters of F1997a, with anopening angle of �0 = 42o. The ontour lines indiate the values for 	 = 10�(0:1n)2 ,with n = 1; 2; ::17.inner region and the outer are equal, must have a boundary that is somewherein between these boundaries.In Fig. 4.4 an be seen what happens when the opening angle �0 ishanged. Although the uniqueness of a this boundary is diÆult to quan-tify, pratie shows that when a given opening angle and outer boundaryausing these kinks, these kinks an only be removed for one opening angle.In the left of Fig. 4.4, when the boundary is hanged inwards (beause nowthe kinks are downwards), the upper part of the distribution may beomesmooth, but the lower part still has a large kink. By doing this for a range inopening angles, it was found that fo too high opening angle we had this prob-lem with upwards bending kinks, and for too low opening angles we had thisproblem with downwards bending kinks. A smooth transition at the light52



surfae ould be found for the intermediate opening angle. The mathing ofthe light surfae was done by hand, whih is quiet unsatisfatory, although itdoes give good results. An iterative proedure ould be made by mathin thederivatives of the distribution at the light surfae, although it will be veryslow, beause iteration would be needed over the outer boundary as well asthe opening angle.

Figure 4.3: The inner region as alulated for the parameters of F1997a, with anopening angle of �0 = 42o. The ontour lines indiate the values for 	 = 10�(0:1n)2 ,with n = 1; 2; ::17. On the left: The parameters desribing the outer boundarywere �0 = 42o, Zyso = 1:5Zls;min, fyso = 6:5, dR = 0:0007 and n = 2. On the right:The parameters desribing the outer boundary were �0 = 42o, Zyso = 1:5Zls;min,fyso = 3:5, dR = 0:0008 and n = 2.The boundary that shows the best math at the light surfae is shown inFig. 4.5. The two shapes of the outer boundary are almost idential and theinternal solution looks onsistent. Due to the onstant rotation, the positionof the light surfae is known in advane. The di�erene in the approah here,is that the whole 2-D struture, inside as well as outside the light surfae atthe same time was alulated by F1997a. The outer part was alulatedseparately and then mathed to the inner part, beause it had to be suitedfor �nding the light surfae of a di�erential rotation as well.The solution seem very alike. Although the boundary may not be the ex-at boundary satisfying the GSE, whih probably would not have the bound-53



Figure 4.4: On the left: 2-D solution for higher opening angle than F1997a. Theontour lines indiate the values for 	 = 10�(0:1n)2 , with n = 1; 2; ::17 (on the left)and n = 1; :2; ::25 (on the right). The parameters desribing the outer boundarywere �0 = 49:2o, Zyso = 2:0Zls;min, fyso = 8:4, dR = 0:000041 and n = 2:5.On the right: The parameters desribing the outer boundary were �0 = 32:7o,Zyso = 2:0Zls;min, fyso = 3:0, dR = 0:00018 and n = 2:0. With these openingangles no outer boundary an be adopted, whih gives a smooth transition at thelight surfae.ary in a straight line at an opening angle �0 from the disk, the math at thelight surfae is so good the internal solution obtained with our approximatejet boundary will be lose to that with the boundary that gives the exatsolution of the GSE. In any ase, the ode was able to repliate the solutionby F1997a up to a good degree of auray. The auray of the ode withrespet to the exat solution of the GSE will be disussed in x 5.1.
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Figure 4.5: On the left: axisymmetri jet struture for onstant 
F , as alulatedwith the new ode. On the right: Same axisymmetri jet struture, as alulated byF1997a. The ontour lines indiate the values for 	 = 10�(0:1n)2 , with n = 1; 2; ::17(on the left) and n = 1; :2; ::25 (on the right). The parameters desribing the outerboundary were �0 = 420, Zyso = 2:0Zls;min, fyso = 5:3, dR = 0:00038 and n = 2:5.Note the di�erene near the disk, as F1997a took the boundary ondition alongthe disk somewhat di�erent 	disk = E	max (r � r0)n with n = 3, r0 = 1:76 andE = 0:03. It an be seen that the disk boundary ondition does not a�et the globalsolution. This shows that for a onstant rotation law, the new ode suessfullyreprodues the solution as found by F1997a.4.2.2 Di�erential rotationIn order to ompare our results with the previous work by FM2001 whereonly the di�erential rotation of the ux surfaes was inluded the exponentialrotation pro�le 
2F (x) = peh�hx was hosen, with a steepness of h = 0:2.For the urrent density distribution I (x) = (x=a)2 =(1 + (x=a)2 was taken.The parameters used are given in Table 4.3. Beause the solution obtainedby FM2001 was normalized with respet to the asymptoti light ylinder, wehad to re-normalize the asymptoti light ylinder radius in terms of the grav-itational radius (as disussed in Setion 3.2.4) to alulate the 2-D struture.For the test, the asymptoti radius was hosen at xl = 25 Rg, whih giveswith the disk size rdisk = 5 Rg like F1997a the same light surfae to disk sizeratio as FM2001.As initial opening angle �0 = 75o was hosen. The solution for the inner55



gI a h rl;1 	BH2.5 1.0 0.2 25.0 0.2Table 4.3: Jet model parameters as alulated by FM2001.region with the initial hoie of the outer boundary are shown in Fig. 4.6.The initial inner solution was shifted 0:1 Rg to the left of the light surfaefor 
F = 1=rl = 0:04. It took 140 steps for the iteration proedure, whihmoves the outer boundary to the light surfae, to onverge to D (x; y)max <1 10�4. The ombined solution for the inner and outer regions is shown inFig. 4.7. The solution as alulated by FM2001 is shown in Fig. 4.8. Againthe global solutions are very alike, as they are determined by the asymptotifree funtions as found by F1997a. The solution near the disk di�er however.This is for a part due to a di�erent boundary ondition taken along the diskand the entral objet. FM2001 took at the disk a distribution of	disk (x) = 1~b ln 1 + �x� xin~a �2! (4.2)with ~a the ore radius of the ux at the disk and ~b = ln �1 + (xdisk � xin)2 =~a2�.The seond di�erene is the inuene of the Kerr metri near the rotatingblak hole. The global solutions are the same as those determined by theasymptoti free funtions as found by F1997a. The outer boundary is slightlydi�erent, but for the purpose of testing the ombining of the two methods,this is quite satisfatory.
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Figure 4.6: On the left: Converged solution for the initial hoie of the outerboundary that was shifted 0:1 Rg inside of the light surfae for 
F = 1=rl = 0:04.The opening angle is �0 = 75o. On the right: The �nal inner solution after 140iteration steps of the light surfae. Both are for a steepness h = 0:2. The ontourlines indiate the values for 	 = 10�(0:1n)2 , with n = 1; 2; ::17.
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Figure 4.7: The axisymmetri jet struture for a di�erentially rotating ux-distribution with steepness h = 0:2, inluding the Kerr metri. The ontour linesindiate the values for 	 = 10�(0:1n)2 , with n = 1; 2; ::17. The parameters desrib-ing the outer boundary were �0 = 75o, Zyso = 1:7Zls;min, fyso = 1:8, dR = 0:000091and n = 3:0. 58



Figure 4.8: The axisymmetri jet struture for a di�erentially rotating ux-distribution jet struture, as alulated in a speial relativisti treatment byFM2001. The ontour lines indiate the values for 	 = 10�(0:1n)2 , with n =1; :2; ::25 (on the right).
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Chapter 5Disussion & Future Work
5.1 DisussionIn alulating the fore balane aross the magneti ux �elds, the ombina-tion of the Kerr metri with the di�erential rotation of the �eld lines appearsto be suessful. In the ase of onstant rotation the same solution as al-ulated by F1997a was found. Beause the outer boundary exat shape asfound by F1997a was not onserved, we had to �nd the boundary again. Wefound a slightly di�erent jet boundary than F1997a (see Fig. 4.5), but the so-lutions look almost exatly alike. What an be seen is that in the region nearthe disk the solutions di�er somewhat. This is due to the slight di�erenein boundary onditions along the disk and the di�erent boundary near theblak hole. F1997a took the light surfae as the inner boundary, we took theergosphere. The global solution is not a�eted by the di�erene in boundaryonditions at the disk. This is beause both have the same free funtionsI (	) and 
F (	 as determined from the asymptoti analytial solutions ofAppl & Camenzind (1993). Beause the ode was based on the ode thatalulated the same solution, so we expet no di�erene in the auray ofthe ode. This is somewhat di�erent in the ase of repliating the solutionof FM2001. By omparing the solution as found by our ode with that ofFM2001 we an say that we found almost the same solution. Although thereare still some small kinks left at the light surfae this approximate solutionlosely resembles that of FM2001. For testing the ode, this result is goodenough to be sure that the ombination of the Kerr metri and the di�erentialrotation has been suessful. 60



Top-down approah and the rotation pro�le 
F The problems whenadopting some rotation pro�le 
F in the top-down approah were desribedin Setion 3:2:4. When trying to math this pro�le to some physial rotationpro�le the steepness (in our ase h = 0:2) in ombination with the ouplingonstant gI was too small, based on arguments onerning the ratio of max-imal and minimal rotation of the asymptoti rotation pro�le and the diskrotation pro�le. When the steepness was inreased, this showed that thelight surfae returned in the asymptoti regime. A seond problem, was thataording to some arguments the rotation of the ux �elds around the blakhole's environment rotate at onstant rotation at some fration of the blakhole's rotation 
F = f
BH (Punsly 2001). Therefore an asymptoti rotationpro�le should have some ut-o� value that orresponds to this rotation. Wedid some investigation with a modi�ed rotation pro�lefor x > xbh 
F = e1=((x�xbh)n+f)h (x� xbh)m + 1 (5.1)for x � xbh 
F = e1=f (5.2)with f = 1= log (h (1� xbh)m + 1)� (1� xbh)n. Here xbh is the positionnormalized in asymptoti light ylinder radii, where the rotation pro�le be-omes onstant. The parametersm, n an be hosen suh that a high rotationis obtained inside the light ylinder and a low fall o� for higher x, makingsure that no returning light ylinder was lose to the jet boundary. The sameIDL proedure as used in Setion 3:2:3 was used to solve the asymptoti GSEfor this rotation pro�le (see Fig. 5.2).The main drawbak of this method was that yet more parameters xbh; m; nhad to be hosen, and for example xbh is determined by the internal forebalane. Also to obtain an exat math between a Keplerian pro�le and theasymptoti rotation pro�le while onserving 
F (	) will always stay a prob-lem while using the solution of the asymptoti jet to determine the internalstruture. Although it must be stressed that the solutions, obtained with thetop-down approah, do give exat solutions for the jet struture, for thesereasons in Setion 5:2 an alternative bottom-up approah will be explainedand its advantages and disadvantages will be disussed.61



Figure 5.1: Pro�le for 
F (x) as in Eq. 5.1. For xbh = 0:2, and di�erent (m;n):dotted (1,1), solid (2,2), striped (2,3).Jet ollimation Although the jet does not propagate through a vauum,this is not neessary for ollimation. When the eletromagneti pressureexeeds the ambient pressure the shape of the jet will not be a�eted. Thepressure of the ambient on�ning medium spans a wide range, from values of10�2 dyn m2 in the broad line region to 10�12 dyn m2 in the intergalatimedium (Appl & Camenzind 1993). The ambient pressure an be relatedto jet pressure. For a jet to be in equilibrium, the sum of stresses on theboundary inside and outside must anel18� �B2� +B2P � E2P�jet = Pext + 18�B2�;ext (5.3)The dimensionless pressure an be expressed as p = (R4LC=	2max)P whihhas the units 62



Figure 5.2: Asymptoti ux distribution as alulated for rotation pro�le as inEq. 5.1. Here a = 1, B = 1, h = 0:2, xjet = 0:2, gI = 1:97 and (m;n) = (2; 2).p =  P10�6 dyn m�2!� RLC1015 m�4 � 	max1033 G m2��2 (5.4)The jet is de�ned by the set of nested ux surfaes with 0 � 	 � 1.This an be done for a saturating pro�le at 	 = 1 beause then there is nopoloidal �eld left beyond this point (d	=dx = 0). In priniple, one an dis-tinguish between two di�erent regimes for a jet (Appl & Camenzind 1993): aurrent-on�ned (or self-on�ned) or a pressure-on�ned jet. Self-ollimationis shown to be possible by time-dependent simulations for partiular ases(Ouyed & Poudritz 1997), but the spatial sales were far below the sales ofthe ollimating regime. There are also arguments based on urrent-losurethat on�nement annot our without external help (Okamoto 1997, 1999).For now we assume that the jet is urrent-on�ned and the external pressurean be negleted.Possible follow-up studies may be done in order to inlude external gaspressure. A possible idea might be to make the pressure gradient as a funtionof the ux-�elds rP (	). Then it ould be inluded as an extra term in thesoure term. It is not really lear what kind of funtion one then would takefor the pressure distribution though. A onstant external pressure and a zeropressure in the fore-free jet would lead to an in�nite high gradient at 	 = 1,so one needs some idea on what to take for the gradient at the jet boundary.63



Whether this an work or not still has to be investigated.Jet stability Having found these solutions for the axisymmetri jet stru-ture, the question arises whether they are stable or not. We have not foundthe time to address this problem yet, and this will have to be done in thefuture. Many studies have been done on the stability of stationary MHDjet solutions (e. g. Appl 1996; Lery 1996; Lery & Frank 2000) show thatsolutions for MHD jets, espeially urrent arrying ones are more stable thanhydrodynami ones. The stability will probably depend on the type of ur-rent distribution I (	) (see Fig. 3.3). The urrent pro�le taken is a pro�lewhere most of the urrent is loated inside the ore radius a (in our solutionin Setion 4:2:2 a = 1, whih orresponds to the asymptoti light ylinder)and then drops o� for larger 	 (a pro�le similar to what Khanna & Camen-zind (1992) obtained for their stationary disk solutions). A parameter studyof the ore radius a, the oupling onstant gI will have to be done in orderto see what e�et they have on the jet struture and see whether it is indeedstable.5.2 Calulating the ux struture from diskphysisThe top-down approah used in this thesis, takes the asymptoti version ofthe GSE, to alulated the asymptoti boundary ondition used by the 2-DGSE. To solve this, for the urrent distribution I (	) and for the rotationpro�le 
F (	) assumption had to be made. The top-down approah usesthe results of studies made by Appl & Camenzind (1993) and F1997b of theasymptoti speial relativisti GSE whih assumes some urrent-distributionand rotation pro�le as a funtion of x (in terms of the asymptoti lightylinder radius xl). From these funtions then a onsistent solution for theasymptoti GSE an be alulated. This an give some ompliations, how-ever, when trying to math these funtions to the physial properties, suhas the rotation of the magneti �elds at the disk. An alternative bottom-upapproah would be to base the distributions of 	 (x), I (x) and 
F (x) on thephysial properties of the disk and around the blak hole, whih an be basedon alulations done by for example Khanna & Camenzind (1992), Okamoto(1992) and others. When one has these desriptions of these three distribu-64



tions, one also has the funtions 
F (	) and I (	) whih are needed to solvethe 2-D GSE. The question is now, how to �nd the appropriate asymptotiboundary ondition. As already mentioned in Setion 3:2:2, when we havethe situation that there is no returning light surfae into the asymptoti re-gion, the light surfae an be used as a boundary ondition for alulatingthe struture inside the light surfae. In our approah, for this region theasymptoti Dirihlet boundary ondition is not mandatory. A homogeneousNeumann boundary ondition (e. g. fully ollimated �eld lines) is enough.The problem is that the position of the outer boundary in the asymptotiregion xjet is now unknown, beause we only have 
F (	) and I (	) and notI (x) and 
F (x) whih an be used to integrate the asymptoti GSE. Wenow start with the rotation pro�le normalized in the dimension of the Kerrmetri, but the true saling is a result of the internal solution that we wantto alulate (as disussed in Setion 3:2:4). In Setion 4:1 we showed the pos-sibility of starting inside of the light surfae and use an iterative proedureto �nd it. It ould therefore be possible, to start at a low position and usethe same proedure to �nd the unknown light surfae and with it the orretsaling of the asymptoti light ylinder radius. The regularity ondition atthe light surfae will make sure this is possible. It is not as straightforward to�nd a solution for the region outside of the light surfae, beause the positionof the jet outer boundary is not known in advane either.We propose a method to �nd the boundary by solving the 2-D GSE inthe asymptoti regime with our ode. Beause the saling of the asymptotilight surfae an be found, the exat position is known and we an try to�nd the true solution by varying the outer boundary where 	 = 1.As a �rst test of this idea we used the analytial solution of Appl &Camenzind (1992) for 	 (x) and the adopted I (x) and 
F (x) to get thefuntions for I (	) and 
F (	). Beause the real solution is known by inte-grating the asymptoti equation, we an examine how the solution hangeswhen a di�erent xjet (	 = 1) is taken. We used a retangular grid far fromthe blak hole, so that the light surfae beomes a ylinder. We hose onlyDirihlet boundary onditions at the inner part 	 (x) = 0 and at the bound-ary 	 (xjet) = 1, and hose the saling of the asymptoti light surfae ofxl = 100 Rg whih gives a jet radius of xAC;jet = 213:80 Rg. We do not setthe boundary onditions at the top and bottom of the grid! In Fig. 5.3 thesolutions are shown for the xjet = xAC;jet � 5; xAC;jet and xAC;jet + 30. Noonverging solution ould be obtained for xjet = xAC;jet � 10; xAC;jet + 50.From Fig. 5.3 it an be seen that for the boundary taken at xAC;jet the65



Figure 5.3: Solutions for the 2-D GSE by varying the boundary of the jet xjet.The dashed line indiates the jet with the boundary xAC;jet, the dotted line withxAC;jet � 5 and the solid line with xAC;jet + 30. Beause the solutions are plottedagainst the equidistant grid points, the asymptoti light ylinders are not on thesame position in the plots. It is lear that kinks appear around the asymptotilight ylinders for the boundaries that do not orrespond to xAC;jet.same solution is obtained as that from the integration. For small devia-tion from xAC;jet a kink d2	=dx2 = 0 appears around the asymptoti lightylinder. For larger deviations the ode did not onverge at all. The solu-tion only onverged for smaller xjet < xAC;jet for smaller deviations than forxjet > xAC;jet. The maximum deviation was about 10% of the jet radius forxjet > xAC;jet and about 2% for xjet < xAC;jet. The diretion of the bumphanges as well when xAC;jet is passed, whih might be an indiation for theorret solution.Although are should be taken in over interpreting these results, it is anindiation that the boundary may be found by examining the behavior of theonverged solutions around the light ylinder. This may be done by startingto take the value of xjet from the light surfae and inrease the value in smallsteps, and look for onverged solutions. The true solution must lie in betweenthe point where the kinks hange sign. It is still unlear how aurate thismethod might be to obtain the exat solution. Whether this holds for an66



arbitrary I (	) and 
F (	) is also still unlear. This has to be studied moreextensively.In order to use the bottom-up approah the full distributions of 
F (x),I (x) and 	 (x) have to be spei�ed for the blak hole/aretion disk system.Although there have been some studies of this, a fully onsistent disk modelhas not yet been found. Beause in the bottom-up approah the jet stru-ture is determined mainly by these quantities, this might be a useful methodalso to test disk models. It ould be seen that for di�erent disk boundaryonditions, the same global solution was obtained. Beause the top-downapproah uses the asymptotially determined free funtion, this is expeted.It would be interesting to study how the disk physis will inuene the globalsolution for the bottom-up approah, beause in this ase, the whole axisym-metri solution is entirely determined by it and not only loally as in thetop-down approah.5.3 Solving the energy equation along the uxsurfaesWith the alulated magneti ux distribution that was obtained solving theross-�eld fore balane it is now possible to alulate the ow propertiesalong the ux surfaes, whih gives for example the �nal ow of the aeler-ated plasma. These follow from the fore-balane along the �eld lines, alledthe Wind Equation (also known as the Bernoulli Equation), whih representsthe integrated stationary MHD energy equation. The most general versionof the stationary relativisti wind equation (Camenzind 1986; Takahashi etal. 1990) is given in terms of the relativistially de�ned poloidal veloityup � vp= by u2p + 1 = ��m  E�!2 k0k2 + �m2k2M4A(k0 + �mM2A)2 (5.5)with k0 = g33
2F + 2g03
F + g00, k2 = 1� 
F LE , andk4 = �g33 + 2g03L=E + g00L2=E2g203 � g00g3367



Fendt & Camenzind (1996) did these alulations for a alulated uxdistribution for onstant rotation to study the inuene of the magnetization�m on various parameters of the ow (see Fig. 5.4). It would be interesting tostudy the inuene of the Kerr metri and the di�erential rotation on theseparameters.

Figure 5.4: On the left: Overall struture of the ritial surfaes of the ollimatedjet. The regions indiated are the sub-Alfv�eni (sA), super-Alfv�eni, but sub-fastmagnetosoni(A/sFM), and super-fastmagnetosoni (FM) (taken from Fendt &Camenzind 1996). On the right: The dynamial parameters along the ux surfae	 = 0:726 for various degrees of magnetization �m. The dynamial properties arethe total energy minus the rest energy �E = E (	)�1, the maximal poloidal veloitynear the asymptoti radius, uM , the poloidal veloity near the fast magnetosoinpoint uF , and the Alfv�en point uA. Also the positions of the fas magnetosonipoint xFM and the Alfv�eni point xA. The partile density N in m�3 at theposition of uM . Fast magnetosoni Mah number M , and the poloidal urrent T ,in units of 	max=RL (taken from Fendt & Camenzind 1996).Although 
F (	) is onserved even in a non-fore-free plasma (as it fol-lows from the axisymmetry assumption), I (	) is not. In order to alulatethe dynamis of the stream the fore-free assumption has to be dropped, be-ause the inertial terms are essential to get the aeleration of the ow. Theapproah is therefore not entirely onsistent. To do it really onsistently, aniteration over the urrent distribution should be adopted: A initial urrentdistribution is taken and a fore-free alulation of the ross-�eld balane68



is done. That �eld distribution is used to alulate the fore balane alongthe �elds inluding inertial terms, whih gives a new urrent distribution.Of ourse the question whether suh an iteration iteration would onvergeshould be investigated, and beause it is probably very time-onsuming andmaybe as a good approximation it may be left out, espeially for highlymagnetized ows. This must investigated further.5.4 Polarization of the jet synhrotron emis-sionAnother interesting follow-up from the work done, is the possibility to alu-late the synhrotron polarization from radio emission. Pariev, Istomin andBeresnyak (2003) reently published their alulations for the degree of po-larization of synhrotron emission in fore-free MHD jets. They assumed asimpli�ed model for the struture and the rotation pro�le of the fully olli-mated magneti ux surfaes (see Fig.5.5).Their adopted rotation pro�le was
F = 
 R  1� � rR�2! (5.6)With 
 the dimensionless strength of the rotation, and R the boundaryof the jet. The Stokes parameters for their on�gurations were given byI = � + 7=3� + 1 k (�) Z R0 dh Z �2�1 jB?j(�+1)=2 hsin � sin2 �d� (5.7)Q = k (�) Z R0 dh�Z �2�1 jB?j(��3)=2 [
2F r2 os2 �� ( sin � + 
F r sin� sin �)2℄B2zh2 sin � sin2 � d� (5.8)U = V = 0 (5.9)69



Figure 5.5: Struture adopted by Pariev et al. (2003) for their alulations ofthe polarization of synhrotron emission in ollimated jets (taken from Pariev etal. 2003).They found that the strength of the rotation 
 has a strong inuene onthe degree of polarization of the synhrotron emission (see Fig. 5.6). Theiradopted struture and rotation pro�le however do not satisfy the ross-�eldfore balane. What would be interesting is to redo these alulations usingthe ux surfae distributions alulated by the method presented in this the-sis. Then from the rotation law of the disk, a more onsistent alulation anbe done for the degree of polarization of the synhrotron emission. We annotdiretly ompare our results to the work of Pariev, Istomin and Beresnyak(2003) and predit the polarization as expeted using our solution, beausein their paper they assume onstant Bz and a di�erent rotation pro�le whiledoing the derivation and their presented equations are not immediately ap-pliable to our obtained solutions. When this is done the alulated emissionmight be a useful tool to probe the ollimation region of the jet.
70



Figure 5.6: Dependene of linear polarization � on the strength of the angularrotational veloity of the magneti ux surfaes and di�erent angles of view. Onthe left: For a homogeneous distribution of emitting partiles. On the right: Foremitting partiles onetrated lose to the Alfv�eni resonane surfae (both takenfrom Pariev et al. 2003)
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Chapter 6ConlusionIn this thesis I studied the fore-free fore balane aross the surfaes of on-stant magneti ux in ollimating relativisti jets with the inlusion of thedi�erentially rotating term of the magneti �eld struture in a bakgroundof the Kerr metri of the entral blak hole. The fous was primarily on theproblems enountered when ombining the separate studies done by F1997aon the Kerr metri, and FM2001 who inluded the di�erential term in aspeial relativisti treatment. The advantage of this ombination is the pos-sibility of onsistently mathing the alulated struture of the ollimated jetto physial properties of the disk and the entral blak hole. Also the inu-ene of the metri on the eletromagneti �elds is onsistently inorporatedin this treatment. For this thesis the ode that alulated the fore-balanein a Kerr metri using a �nite element approah was extended to inlude thedi�erential rotation of the magneti �eld lines. The alulations done by theresulting ode were ompared to those done by F1997a and FM2001. Thesetests out that the new ode an suessfully obtain the same results. Thesolution shown in Fig.4.7 is therefore a full solution that inludes the di�er-ential rotation of the ux surfaes and the general relativisti desription ofthe spae-time.In order to solve the GSE the free funtions of the the di�erential rotationpro�le 
F (	) and I (	) had to be spei�ed. We did this aording to a top-down approah as adopted by FM2001, whih uses the analytial studiesof asymptotially ollimated jets done by Appl & Camenzind (1993) andF1997b to obtain the free-funtions 
F (	) and I (	). These were then usedto alulate the global solution by solving the axisymmetri GSE.By studying the asymptoti GSE, we found the possibility for a relativisti72



ore struture in the asymptoti ollimated jet. For some rotation pro�les,the light surfae (the Alfv�eni surfae in the ase of high magnetization)an return into the asymptoti regime, thereby dividing the jet into an innersub-relativisti part, a relativisti ore, and an outer sub-relativisti envelope.As far as we know, this has not been mentioned yet in previous studies onasymptotially ollimated jets. It does resemble the super-Alf�eni ore Casse& Keppens (2002) see in their time-dependent non-relativisti simulations.Up till now, studies of relativisti jets have been onerned only with jetshaving an inner sub-relativisti region and an outer relativisti envelope.Due to the extra omplexity of the relativisti ore struture, we do not yettreat these strutures with returning light surfae.Although this approah did give a onsistent solution to Eq. 2.29, it pre-sented some problems when trying to math the struture to the disk/blakhole physis. For some disk models that imply some distributions 
F (x),I (x) and 	 (x) to �nd the jet-struture that �ts these distribution, the top-down approah did not give a diret math, beause it was not lear whatasymptoti distributions to take for the asymptoti rotation pro�le 
F1 (x).The rotation pro�le as used for the solution in Fig. 4.7 is too at to math aKeplerian rotation at the disk.An alternative bottom-up approah was introdued to solve the axisym-metri struture by starting from the disk distributions instead of the asymp-toti distributions. Instead of determining the free funtions 
F (	) andI (	) from the asymptoti regime, these were taken from the disk/blak holephysis itself. The rotation pro�le in ombination with the ux distributiongives the formal asymptoti light surfae for any ux 	�. Whether this uxollimates at the light surfae is a result of the 2-D solution. We showed thatthe light surfae ould suessfully be obtained when starting out inside ofthe surfae and then shift the boundary outwards bit-by-bit, whih was pos-sible due to the regularity ondition at the light surfae. Therefore it shouldbe possible to obtain the light surfae. Instead of now solving the asymptotiversion of the GSE, we propose to solve a asymptoti version of the 2-D GSEusing the newly developed ode. The only unknown is the outer boundaryposition xjet. By varying the boundary xjet (	 = 1) there are indiations thatthe solution an be found by these means. Beause there was too little timeto fully study this approah, more extensive work is needed. The asymp-toti solution obtained in this way an then be used to alulate the globalsolution as done by FM2001. The bottom-up approah would then give aonsistent math between the jet struture and the blak hole/aretion disk73



boundary onditions. The bottom-up approah may also show out whetherthe rotation pro�le at the disk will have a relativisti ore struture or a rel-ativisti envelope struture. Possible follow-up studies were disussed werethe solution obtained with the newly developed ode ould be used in orderto solve the fore-balane along the �eld lines, allowing for estimations ofthe �nal veloities of the plasma. Also the solutions give the possibility toalulate the polarization of the jet emission. In future work the stabilityof our solutions also has to be examined. Also a parameter study has tobe done for various parameters like the oupling onstant gI , and the oreradius a of the urrent distribution.We realize that the many assumptions (stationarity, axisymmetry, fore-freeness, full ollimation of the asymptoti jet) may weaken our treatment ofthe jet struture, although reasonable arguments have been given to justifythem, but we note that for the moment these kind of treatments are theonly possible way to treat the jet in a global sense. This is needed in orderto learn from the global jet struture the internal proesses that are yet(and will remain) unobservable. To fully understand how the jet is initiated,ollimates and propagates, a time-dependent study that inludes the disk,entral objet and the environment in a onsistent way is inevitable, but forobjets as omplex as relativisti jets this is still far away for now.
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Appendix A: Finite elementssolverThe GSE equation was solved by using the method of �nite elements, whihis suited to solve seond-order partial di�erential equations like the GSE.The proedure was based on work on the speial relativisti GSS originallyintrodued by Camenzind (1987), that was further developed by Haehnelt(1990), who inluded Kerr metris. Fendt (1994, 1995, 1997) extended theode to get solutions extending throughout the outer light ylinder. Morereently, Memola (2001) has worked on the speial relativisti ode inludingdi�erential rotation of the �eld lines. For the purpose of this master-thesis,the ode has been extended to inlude both the soure term due to di�erentialrotation of the �eld lines as well the Kerr metri.In general, for problems that annot be solved by Variational methods,a Galerkin ansatz of weighted Residues is used (see Shwarz 1984): Theintegration area G is disretized in a grid of �nite elements with eah elementontaining m knots. The funtion 	 (r; �) is approximated at eah grid-element (e) by an expansion into m linearly-independent funtions,	(e) (r; �) = mXi=1 (e)i N (e)i (r; �) (6.1)where the the knot-variables (e)i are hosen suh that they represent thefuntion value 	(e)i .The solution on the whole area an be represented by ombining all theinitial expansions of the individual grid elements,	 (r; �) = nXk=1	kN (e)k (r; �) (6.2)76



where the summation now is over all n knot-points of the grid, and the setof global form-funtions N (e)k (r; �) are taken from the element-form-funtionsN (e)i (r; �), that have the value of one in knot-point k.With this Ansatz, the di�erential equation will only be ful�lled up toa Residual < (r; �). The auray depends on the number of knots, or thenumber of expansion oeÆients. The Method of Galerkin demands for mini-mizing the Residual, that the integral of the Residual, weighted with a spei�weight-funtion Wj over the integration area, dissapears,ZZD < (r; �)Wj (r; �) dA = 0 (6.3)in ase of the GSE the Residual is< (r; �) = ~!r � f�D~!2 r nXk=1	kNk (r; �)!g � J (6.4)where J is the soure-term of the GSE. If the m funtions Ni are taken asthe weight-funtion, a set of m linear independent equations remain for eahgrid element, that an be solved in priniple to the oeÆients 	k. Then thesolution 	 (r; �) is fully determined.The integral an be done by using Green's Identity so that one retainsthe 'weak form' of the GSE,ZZ �D~! rNi � r	dA = ZZ JNidA+ I �D~! Ni�	�n ds (6.5)This gives a matrix,Aij = ZZ �D~! (��rNi�rNj + ��Ni��Nj) drd�p� (6.6)and a vetorBi = ZZ�DNiJ �2p�drd� + I D~! Ni�n	ds(6.7)For the set of 	k the following equation holds,A (	)	 = B (	) (6.8)
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Appendix B : Choosing the gridA grid was used with 128x128 �nite elements. Eah of the isoparametriurvilinear �nite element (Shwarz 1984; Cesari 1994) is formed of 8 gridpoints, or nodes, whih gives a total of 49665 grid-points for the whole gridat whih the GSE is disretized. For the inner solution from 128 elements inthe z-diretion, 27 grid points were used at the blak hole ergosphere, and24 grid points at the aretion disk.The struture of the grid is shown in Fig. 6.1. For the inner grid shapeof the left and right boundaries were spei�ed. The elements were dividedin steps of equal (dR; dZ) in both diretions. A straight line then onnetedthe left and the right elements in a straight line. For eah line, the spaingsof (dR; dZ) were equal.
nyrl=257

nyrl=257

nxrl=257

nxrl=257
nde2=27

nde3=24

nyrl-nde2-nde3 = 206

nxrl=257

nxrl=257

Figure 6.1: setup of grids hosen for inner and outer region
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