What data can do for you

H-W Rix, April 10, 2012

A worked example & a soapbox

The Worked Example*:

How the Galactic disk grew: from 'old, fat and short' to 'young, thin and long'

- You can see it in the data
- It's hard to resist (over-?)interpretation
- The Soapbox: (or: what YOU need to do for the data)
 - A) Understanding the selection functions is the limiting factor for doing dynamics of discrete tracers in the Milky Way
 - dynamics links underlying (spatial) densities to kinematics [precision? 1/sqrt(N*)]
 - two options: throw away large fraction of the information, or do hard work
 - B) The data themselves are an excellent (self-)calibration source
 - C) Dynamics tell you the 'now'
 - Qualitative 'formation history' speculation in easy
 - Quantitative 'scenario testing' is very hard

^k Bovy, Rix et al 2011/12

What if you could look at the Milky Way's Disk with Eyes only for Stars of a Certain Age? Bovy, Rix, et al 2011a

 Accept mono-abundance sub-populations in [α/Fe] & [Fe/H] space as proxy for 'mono-age':

α−enhanced ← → rapid (early?) enrichment, best practical 'age tag'?

What is their *spatial* and *kinematic* structure?

- vertically, radially
- Data:
 - SEGUE (Yanny et al 2009): G-dwarf sample
 - Complex spectroscopic selection function
 - Target selection: sample 60 stars/plate in m_r,g-r space
 - To get [a/Fe] → spectral S/N limited
 - Exposure time, airmass, seeing, m_r,g-r
 - Distance, survey volume = f([Fe/H])
 → only known post-facto (post-spectro)

• Then 'fit'
$$v_{G-dwarf}(R,z\mid\vec{p}_*(\text{[a/Fe],[Fe/H])}) = v_0 \times e^{-\frac{|z|}{h_z(\vec{p}_*)}} \times e^{-\frac{(R-R_\bullet)}{R_{\exp}(\vec{p}_*)}} \stackrel{\frac{\sqrt{g}}{2}}{\stackrel{N}{>}}$$

Galactocentric Radius [kpc]

What does the Milky Way's disk look like in stars of a given $[\alpha/Fe]$ -'age'?

- for any given $[\alpha/Fe]$ -[Fe/H], disks are
 - single vertical exponentials (z)
 - single radial exponential (R)
- → mono-abundance components are simple!

- $[\alpha/Fe]$ -old disk components are **thick**
- $[\alpha/Fe]$ -old disk components are **compact**
 - contrary to the geometric decompositions
- At a given [a/Fe]-age, more metal-poor components are more extended!
 - 'outward metallicity gradient'

Abundance-dependent kinematics of the MW Disk

Liu & vdVen 2012, Bovy, Rix et al 2012

Make – and fit – model for velocity dispersion at each [α /Fe], [Fe/H]

$$\sigma_z(R, z; \theta) = \left(p_1 + p_2|z| + p_3|z|^2\right) \exp\left(-\frac{R - R_{\odot}}{R_{\sigma}}\right)$$

 $\sigma_{\rm z}({\rm R}) \sim \exp(-{\rm R}/7{\rm kpc})$

Conclusions from the Worked Example

- Looking at the Milky Way in α -age,[Fe/H]-bins slices the stellar disk into 'simple components'
- ullet lpha-old stars are thickest **and** centrally concentrated
 - inside-out growth of the Milky Way disk over ~10Gyrs

no inconsistencies with previous claimed 'dichotomies'

- → continuous or many-episode disk heating?
 - radial migration explains many aspects
- → oldest stars were never born in a thin,cold disk?

Soap-Box A) Spatial distribution of spectroscopic samples: accounting for the sampling function is **key**

For given density model:

$$\mathbf{v}_{G-dwarf}(R,z\mid\vec{p}_*) = \mathbf{v}_0 \times e^{-\frac{|z|}{h_z}} \times e^{-\frac{(R-R_{\bullet})}{R_{\exp}}}$$

how best to determine the model parameters?

Sub-set of stars (65) targeted in m_r , g-r color-magnitude per (faint/bright) plate

•S/N cut for [a/Fe] determination

Construct sampling function:

$$W_{spec}(R,z \mid (l,b), m_r, g-r, [Fe/H], \sigma_{seeing}, bright/faint)$$

Bovy, HWR et al 2011a

Which fraction of stars in a $(m_r,g-r)$ bin get targetted by SEGUE?

(Surface)-mass weighting of the abundance distribution in SDSS/SEGUE (at R_0)

Bovy, Rix & Hogg 2012

- have fitted $n_*(G-dwarfs)$ of given $[\alpha/Fe]$, [Fe/H]
- Which fraction of the stellar mass of a population with p(t_{age}|[a/Fe],[Fe/H]) is contained in 'color-selection box'?
- Assume e.g. Chabrier IMF, p(t_{age}) + isochrone and integrate over appropriate color range
 n*(G-dwarfs) → ρ*
 - density & kinematics vary dramatically with subpopulation: ~1-10% accurate linkage is hard
 - you are never volume-, mass-, etc.. limited, always S/N-limited in some other quantity
 - Need 'machinery' like cosmic LSS surveys

Soap-Box B): Exploit Self-Calibration How precise are the SDSS abundance measurements?

Bovy, Rix et al 2012 (imminent)

vertical σ_{τ} dispersion profile

1500

|z| [pc]

0.50 0.45

0.40

[Fe/H]

- •but $<\sigma_z(z)>$ varies strongly with abundance •as does the scale height
- → there cannot be much bin cross-contamination

What data can do for you

• The Worked Example*:

How the Galactic disk grew: from 'old, fat and short' to 'young, thin and long'

- You can see it in the data
- It's hard to resist (over-?)interpretation

The Soap-Box:

- A) Understanding the selection functions is the limiting factor for doing dynamics of discrete tracers in the Milky Way
 - dynamics links underlying (spatial) densities to kinematics [precision? 1/sqrt(N*)]
 - two options: throw away large fraction of the information, or do hard work
- B) The data themselves are an excellent (self-)calibration source
- C) Dynamics tell you the 'now'
 - Qualitative 'formation history' speculation in easy
- Quantitative 'scenario testing' is very hard

^{*} Bovy, Rix et al 2011/12

What is the scale-height distribution of stars in the Milky Way's disk? or Is there a 'Distinct' Thick Disk

- 1) for each star: $[\alpha/Fe]$, $[Fe/H] \rightarrow h_7$
- 2) for each $[\alpha/Fe]$, [Fe/H] bin $\rightarrow \Sigma(R_0)$
- \rightarrow scale height distribution $\Sigma(h_z)$ at R_0

What is the scale-height distribution of stars in the Milky Way's disk? or Is there a 'Distinct' Thick Disk

• $\Sigma_{R_0}(h_z)$ is NOT bi-modal!

$$\Sigma_{R_0}(h_z) \sim e^{-h_z}$$

$$\Sigma_{R_0}(h_z) \sim e^{-\sigma_z^2} \sim e^{-kT}$$

→ thick disk portions appear as 'thermal tail' of a vertical height/temperature distribution

Picture of distinct thin/thick disk not supported by data!

(Stellar) Disk Evolution Processes

- Gas Infall & Star Formation
- Radial Migration

(Sellwood & Binney 2002, Minchev et al 2009)

- Spiral arms, bars change stars' orbits near co-rotation resonance
 - radius changes without eccentricity boost
 - bars/spirals arms are presumably transient
 → R_{co-rot} wanders
- Qualitatively inevitable whenever bars/spirals have been present
- Minor mergers
 - can heat the disk (e.g. Moster et al 2010)
 - can augment the disk (e.g. Abadi et al 2003)
 - Qualitatively inevitable

The Geometry of Mono-Abundance Sub-Populations

- Old: thick ←→ compact
 Young: thin ←→ rad. extended
- NB: in a few bins error-induced abundance mixing is important.
- Some abundance bins have effectively flat radial profile at R₀

http://www.youtube.com/watch?v=tL4gTINR1Y8

Traditional Characterization of the MW's Stellar Disks(s) Geometry & Kinematics

- Stellar Number Density
 - double exponential vertically (thick/thin disk)
 - exponential in radius: thick disk radially extended???

50

600

Z [pc]

800

, σ_{ϕ} , $\sigma_{\rm r}$ [km/s]

- Stellar kinematics
 - velocity dispersion increases with height
- Two component description sensible

..but the geom./kinem. data show no 'breaks'

Characterizing the Stellar Disks(s) Chemo-kinematic

- Bi-modal [α /Fe] distribution
 - Abundances are α -enhanced until
 after a few Gyrs SN Ia enrichment takes over
 - Lee et al 2011, Navarro et al 2011
 - α-enhanced ← → rapid (early?) enrichment,
 best practical 'age tag'?
- Strong correlation between kinematics and abundances:
 - more metal-poor: kin. hotter
 - 'thick disk' is α -enhanced [α /Fe]>0.2
- Do the abundances argue for a "distinct thin-thick disk"?

Approaches to Testing Disk Formation/Evolution Scenarios:

- Ideally, we would like to know:
 - How many stars are on which orbits now?
 and how is this related to
 - When and on what orbits were they born?
 - Stellar ages are hard to measure \rightarrow abundance tags, [α /Fe]
- A local (<200 pc) approach to this line of argument (e.g. Schoenrich & Binney 2009)
 - − $[\alpha/\text{Fe}]$ as enrichment age proxy, [Fe/H] birth radius proxy \rightarrow
 - abundance distribution of stars near the Sun can be explained as a consequence of radial migration

Does that model – tuned to R_o – get things right at other radii?

Questions for this talk

Has the Milky Way disk grown inside out throughout its life?

Does it make sense to view distinct thin & thick disk components?

Can one differentiate disk evolution mechanism?

The data: SEGUE

'SDSS spectroscopizes the Milky Way'

Yanny et al 2009; Rockosi: PI

- spectra for 240,000 stars
 - ~10 targeting categories
 - spectral res. R~1800
 - $-14 < m_r < 20$
- yielding:
 - T_{eff}, log g
 - [Fe/H] (± 0.2 dex), [α /Fe] (0.06dex) (Lee et al 09)
 - (MS) distances to ~7% (An et al 2010)
 - $-\delta v \sim 7 \text{ km/s} (\delta \mu \sim 2.5 \text{mas/yr})$
- good:
 - radial velocities 'good enough': ~8 km/s
 - distances 'good': ~5-10%
 - two abundance numbers: [Fe/H], [α /Fe]
 - giant/dwarf separation using log g
- less good:
 - mostly high latitude / optical spectra
 - D_{min} = 300-700 pc

Abundance-dependent kinematics of the MW Disk

Liu & vdVen 2012, Bovy, Rix et al 2012 (imminent)

- In general: stars well above the disk plane are 'hotter' (larger σ_z)
- What are the kinematics of 'monoabundance' components?

vertical $\sigma_{\rm z}$ dispersion profile

What is the scale-height distribution of stars in the Milky Way's disk? or Is there a 'Distinct' Thick Disk

