Measuring the Milky Way potential without dynamical models

Jorge Peñarrubia (IAA-CSIC)

in coll. w/ Sergey Koposov & Matt Walker

Ringberg 12th April 2012

Stars moving on very similar orbits

Strong constraints on MW potential

Friday, 13 April 2012

Stars moving on very similar orbits

Strong constraints on MW potential

ISSUES:

- **★** Complexity in the stream
- \star Non-uniform maps
- **★** Membership probabilities
- **★** Phase-space mixing with age

JP, Martinez-Delgado, Rix+05

Stars moving on very similar orbits

Strong constraints on MW potential

ISSUES:

- ★ Complexity in the stream
- **★** Non-uniform maps
- **★** Membership probabilities
- **★** Phase-space mixing with age

JP, Martinez-Delgado, Rix+05

JP, Benson, Martinex-Delgado & Rix et al. 2006

Stars moving on very similar orbits

Strong constraints on MW potential

ISSUES:

- Complexity in the stream
 - ***** Non-uniform maps
 - **★** Membership probabilities
 - **★** Phase-space mixing with age

Analysis of integrals of motion!

JP, Benson, Martinex-Delgado & Rix et al. 2006

Stars moving on very similar orbits

Strong constraints on MW potential

ISSUES:

Analysis of integrals of motion!

requires 6D phase-space information

- **★** Complexity in the stream
- ***** Non-uniform maps
- **★** Membership probabilities
- **★** Phase-space mixing with age

Peñarrubia, Koposov & Walker (2012)

"Biases in the calculus of orbital energy yields and **increase** in the entropy of the energy distribution"

Entropy

Theorem:

"The entropy measured for stellar systems with separable energy distributions increases under the presence of biases in the theoretical modelling of the host's gravity"

$$\begin{split} \varepsilon &= -E + \Phi_{\infty} & \text{Relative energy} \\ & \tilde{\varepsilon}(\mathbf{r}) = \varepsilon(\mathbf{r}) + \delta \Phi(\mathbf{r}) & \text{Energy Bias} \\ & \tilde{f}(\varepsilon, \mathbf{r}) = f[\varepsilon - \delta \Phi(\mathbf{r}), \mathbf{r}] = f[\varepsilon - \delta \Phi(\mathbf{r})]g(\mathbf{r}) & \text{Separability condition} \end{split}$$

Measured energy distribution:

$$\begin{split} \tilde{f}(\varepsilon) &= \int f(\varepsilon - \delta \Phi(\mathbf{r}))g(\mathbf{r})d^{3}\mathbf{r} \approx \\ f(\varepsilon) \int \left[1 - \delta \Phi(\mathbf{r})\frac{f'(\varepsilon)}{f(\varepsilon)} + \frac{\delta \Phi^{2}(\mathbf{r})}{2}\frac{f''(\varepsilon)}{f(\varepsilon)}\right]g(\mathbf{r})d^{3}\mathbf{r} = \\ f(\varepsilon) \left[1 - \langle \delta \Phi \rangle \frac{f'(\varepsilon)}{f(\varepsilon)} + \frac{\langle \delta \Phi^{2} \rangle}{2}\frac{f''(\varepsilon)}{f(\varepsilon)}\right]. \end{split}$$

Entropy

Theorem:

"The entropy measured for stellar systems with separable energy distributions increases under the presence of biases in the theoretical modelling of the host's gravity"

Measured Entropy

$$\begin{split} \tilde{H} &= -\int d\varepsilon \tilde{f}(\varepsilon) \ln[\tilde{f}(\varepsilon)] = \\ H &+ \langle \delta \Phi \rangle \int d\varepsilon f'(\varepsilon) [1 + \ln f(\varepsilon)] \\ &- \frac{\langle \delta \Phi \rangle^2}{2} \int d\varepsilon f(\varepsilon) \left[\frac{f'(\varepsilon)}{f(\varepsilon)} \right]^2 - \frac{\langle \delta \Phi^2 \rangle}{2} \int d\varepsilon f''(\varepsilon) [1 + \ln f(\varepsilon)]. \\ &1) \int d\varepsilon f'(1 + \ln f) = (f \ln f)_0^{\Phi_{\infty}} = 0, \\ &2) \int d\varepsilon f''(1 + \ln f) = - \int d\varepsilon f \left[\frac{f'}{f} \right]^2. \end{split}$$

$$\tilde{H} = H + \frac{\langle \delta \Phi^2 \rangle - \langle \delta \Phi \rangle^2}{2} \int d\varepsilon f(\varepsilon) \left[\frac{f'(\varepsilon)}{f(\varepsilon)} \right]^2 \equiv H + \frac{\sigma_{\Phi}^2}{2\sigma_{\varepsilon}^2} \ge 0$$

Entropy

Theorem:

"The entropy measured for stellar systems with separable energy distributions increases under the presence of biases in the theoretical modelling of the host's gravity"

Measured Entropy

$$\tilde{H} = H + \frac{\langle \delta \Phi^2 \rangle - \langle \delta \Phi \rangle^2}{2} \int d\varepsilon f(\varepsilon) \left[\frac{f'(\varepsilon)}{f(\varepsilon)} \right]^2 \equiv H + \frac{\sigma_{\Phi}^2}{2\sigma_{\varepsilon}^2}$$

- Entropy increases for $\ \delta \Phi = \delta \Phi({f r})
 eq 0$
- Adding a constant value to the potential does not yield an increase in entropy
- Changes in entropy will be stronger for "cold" distributions

 $f(\varepsilon) = 1/\sqrt{2\pi\sigma_{\varepsilon}^2} \exp[-(\varepsilon - \varepsilon_{\rm orb})^2/(2\sigma_{\varepsilon}^2)]$

Unbiased (true) energy distribution

 $\Phi(r) = \Phi_0 \ln(d_0^2 + r^2)$

Unbiased (true) Potential

 $f(\varepsilon) = 1/\sqrt{2\pi\sigma_{\varepsilon}^2} \exp[-(\varepsilon - \varepsilon_{\rm orb})^2/(2\sigma_{\varepsilon}^2)]$

Unbiased (true) energy distribution

 $\Phi(r) = \Phi_0 \ln(d_0^2 + r^2)$

Unbiased (true) Potential

$$r_{\rm apo} = 5d_0$$

 $\sigma_{\varepsilon} = 10^{-3} \Phi_0$
 $H_{\rm Gauss} = 1/2[\ln(2\pi\sigma_{\varepsilon}^2) + 1]$

 $f(\varepsilon) = 1/\sqrt{2\pi\sigma_{\varepsilon}^2} \exp[-(\varepsilon - \varepsilon_{\rm orb})^2/(2\sigma_{\varepsilon}^2)]$

Unbiased (true) energy distribution

 $\Phi(r) = \Phi_0 \ln(d_0^2 + r^2)$

Unbiased (true) Potential

- I. Potential parameters
- 2. Functional form of the potential

3. Gravity model

$$\tilde{\Phi}(r) = 2\Phi_0 \left[y + \frac{y^3}{3} + \frac{y^5}{5} + \dots + \sum_{k=0}^{(N-1)/2} \frac{y^{2k+1}}{2k+1} \right] + \Phi_0 \ln d_0^2$$
$$\lim_{N \to \infty} \tilde{\Phi} = \Phi_0 \ln(r^2 + d_0^2) = \Phi$$

- I. Potential parameters
- 2. Functional form of the potential

3. Gravity model

$$\tilde{\Phi}(r) = 2\Phi_0 \left[y + \frac{y^3}{3} + \frac{y^5}{5} + \dots + \sum_{k=0}^{(N-1)/2} \frac{y^{2k+1}}{2k+1} \right] + \Phi_0 \ln d_0^2$$
$$\lim_{N \to \infty} \tilde{\Phi} = \Phi_0 \ln(r^2 + d_0^2) = \Phi$$

Entropy can be used to distinguish between different potential parametrizations

- I. Potential parameters
- 2. Functional form of the potential
- 3. Gravity model

Example I: Dirac's cosmology

$$\frac{Gm_p m_e}{e^2} \simeq 10^{-39} \simeq \frac{e^2}{m_e c^3 t};$$

$$E_D = H_0^2 t^2 \left[\frac{1}{2} \left(\frac{d\mathbf{r}}{dt} \right)^2 + \frac{G}{G_0} \Phi(\mathbf{r}) - \left(\frac{d\mathbf{r}}{dt} \cdot \frac{\mathbf{r}}{t} \right) \right] + \frac{1}{2} H_0^2 \mathbf{r}^2;$$
Lynden-Bell (1982)

at t=H₀-1

$$\delta \Phi_D = \pm [-H_0 (d\mathbf{r}/dt \cdot \mathbf{r}) + 1/2H_0^2 \mathbf{r}^2].$$

- I. Potential parameters
- 2. Functional form of the potential
- 3. Gravity model

Example I: Dirac's cosmology

$$\frac{Gm_p m_e}{e^2} \simeq 10^{-39} \simeq \frac{e^2}{m_e c^3 t};$$

$$E_D = H_0^2 t^2 \left[\frac{1}{2} \left(\frac{d\mathbf{r}}{dt} \right)^2 + \frac{G}{G_0} \Phi(\mathbf{r}) - \left(\frac{d\mathbf{r}}{dt} \cdot \frac{\mathbf{r}}{t} \right) \right] + \frac{1}{2} H_0^2 \mathbf{r}^2;$$
Lynden-Bell (1982)

at t=H₀-1

$$\delta \Phi_D = \pm [-H_0 (d\mathbf{r}/dt \cdot \mathbf{r}) + 1/2H_0^2 \mathbf{r}^2].$$

- I. Potential parameters
- 2. Functional form of the potential
- 3. Gravity model

Example 2: QMOND

$$\mathbf{g}_M = \mathbf{g}_N \nu(r) \equiv \mathbf{g}_N \left(\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{a_0}{g_N}} \right),$$

$$g_N = -GM(\langle r \rangle / r^2,$$

$$\Phi_M(r) = \int_r^\infty g_M(r') \mathbf{r}';$$

- I. Potential parameters
- 2. Functional form of the potential
- 3. Gravity model

Example 2: QMOND

$$\mathbf{g}_M = \mathbf{g}_N \nu(r) \equiv \mathbf{g}_N \left(\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{a_0}{g_N}}\right)$$

$$g_N = -GM(\langle r \rangle / r^2,$$

$$\Phi_M(r) = \int_r^\infty g_M(r') \mathbf{r}';$$

- I. Potential parameters
- 2. Functional form of the potential
- 3. Gravity model

Example 3: f(R) gravity theories

$$\mathcal{A} = \int d^4x \sqrt{-g} [f(R) + \mathcal{L}_m];$$

 $f(R) = f_0 R^n$ Ricci curvature

 $\operatorname{ACDM}: f(R) = R + 2\Lambda$

Cappozziello et al (2007) $\Phi_R = 1/2(\Phi_N + \Phi_c)$ $\Phi_c(r) = -4\pi G \left[\frac{1}{r} \int_0^r dr' \rho(r') r'^2 \left(\frac{r}{r_c} \right)^\beta + \int_r^\infty dr' \rho(r') r' \left(\frac{r}{r_c} \right)^\beta \right].$

 $\label{eq:beta} \begin{array}{ll} \beta = 0 & {\sf Newton} \\ \beta = 0.82 & {\sf Fit\ rotation\ curves\ with\ {\sf NO\ DM}} \end{array}$

- I. Potential parameters
- 2. Functional form of the potential
- 3. Gravity model

Example 3: f(R) gravity theories

$$\mathcal{A} = \int d^4x \sqrt{-g} [f(R) + \mathcal{L}_m];$$

 $f(R) = f_0 R^n$ Ricci curvature

 $\operatorname{ACDM}: f(R) = R + 2\Lambda$

Cappozziello et al (2007)

$$\Phi_R = 1/2(\Phi_N + \Phi_c)$$

$$\Phi_c(r) = -4\pi G \left[\frac{1}{r} \int_0^r dr' \rho(r') r'^2 \left(\frac{r}{r_c} \right)^\beta + \int_r^\infty dr' \rho(r') r' \left(\frac{r}{r_c} \right)^\beta \right]$$

 $\label{eq:beta} \begin{array}{ll} \beta = 0 & \mbox{Newton} \\ \beta = 0.82 & \mbox{Fit rotation curves with NO DM} \end{array}$

The Minimum Entropy Method

it is a simple statistical technique for constraining simultaneously the MW gravitational potential and testing different gravity theories directly from phase-space surveys and without adopting dynamical models.

 $E_i = 1/2(V_x^2 + V_y^2 + V_z^2)_i + \Phi(X_i, Y_i, Z_i)$

I. Phase-space catalogue: $\{X, Y, Z, V_x, V_y, V_z\}_i$; $i=1, 2, ..., N_*$

f(E), H

- 2. Calculate
- 3. Calculate
- 4. Look for Φ that minimizes H

Tidal debris

the energy distribution of tidal debris is not separable JP+06, Eyre & Binney 08

Tidal debris

the energy distribution of tidal debris is not separable

JP+06, Eyre & Binney 08

Kullback-Leiblar (or KL) divergence

$$D_{i} = \int f_{i}(\varepsilon) \ln \left[\frac{f_{i}(\varepsilon)}{f(\varepsilon)} \right] d\varepsilon \equiv -H_{i} + H_{c,i};$$

Distributions are separable if D_i=0

Crossed entropy

$$H_{c,i} = -\int f_i(\varepsilon) \ln f(\varepsilon) d\varepsilon$$

Tidal debris

$$H = -\int f(\varepsilon) \ln f(\varepsilon) d\varepsilon = -\alpha \int f_l(\varepsilon) \ln f(\varepsilon) d\varepsilon - (1 - \alpha) \int f_t(\varepsilon) \ln f(\varepsilon) d\varepsilon$$
$$\equiv \alpha H_l + (1 - \alpha) H_t + \alpha D_l + (1 - \alpha) D_t \equiv \langle H \rangle_{l,t} + \langle D \rangle_{l,t};$$

Summary

- "The true Milky Way potential is that that minimizes the entropy measured for stellar systems with separable energy distributions"
- Best targets: Tidal debris of satellites/clusters with low dynamical masses
- Future work: Gaia errors? MW background?

Friday, 13 April 2012