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Abstract. This paper describes an investigation into the suitability of Gaussian process models
for predicting the microstructure evolution arising from static recrystallization. These methods
have the advantage of not requiring a prior understanding of the micromechanical processes. They
are wholly empirical and use a Bayesian framework to infer the probability distribution of data,
given a ‘training set’ comprising observed outputs for known inputs. Given the evidence from the
training set, they can make a prediction and assess its certainty, taking into account the noise in the
data. In addition, non-uniform deformation geometries were chosen to provide the training data,
both to approximate typical manufacturing processes with complex strain paths and to investigate
whether learning could be accelerated by using only a small number of test samples containing a
distribution of deformation histories. The model was trained and tested on data from samples of a
cold-deformed and annealed aluminium—magnesium alloy.

1. Introduction

For many years there has been great interest in trying to predict the microstructure evolution in
thermo-mechanically processed metals. A number of approaches have been taken, including
Avrami-based models [1, 2] and state-variable-based models [3,4]. Both types of model have
the advantage that they incorporate some physical understanding into the form of the model, but
they also have a number of disadvantages. They are especially difficult to apply in situations
that are either inherently very complex, such as rolling in a four stand tandem mill, or which
are far from ideal, for example recrystallization in coarse-grained samples. Furthermore, they
often require input parameters that are difficult to measure, such as dislocation density and
subgrain misorientation.

Recently, there have been developments in empirical modelling in other fields, using neural
networks and similar devices to map nonlinear patterns in multi-parametric ‘training’ data.
Neural networks, in particular, have been employed with some success in materials science
applications, such as the prediction of weld toughness in steels [5] and damage in forged
composites [6]. These models adjust internal parameters to minimize differences between
their predictions and the measured output values for corresponding inputs in the training data
set. In this paper we evaluate an alternative method, called a Gaussian process model, which
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infers a probability distribution over all of the training data and then interpolates to make
predictions [7-11]. These models have the advantage that one can train them simply on the
available input parameters and then examine the extent to which they are able to make reliable
predictions.

Materials models generally include some parameters that must be measured by experiment.
Consequently, almost all models require some degree of training. For micromechanical models,
this is often to calculate the value of certain constants, but for approaches that contain no
information on the form of the relationship before training, this stage is more extensive. As
a result, it usually requires a much larger data set than is needed to ‘tune’ methods based on
models with a predetermined form. Traditionally, the training data set comprises a series of
samples, each of which has experienced different strains, constant strain rates and deformation
temperatures. In this paper, training is based on samples that have experienced non-uniform
straining conditions. This means that a single sample contains many locations that have each
experienced a different deformation trajectory. By calculating the details of the strain trajectory
point by point, each sample can thus provide a number of strain trajectory/microstructure data
points. In principle, this increases the efficiency of data collection with respect to the amount
of material, time and cost. Also, because real forming processes never apply constant and
uniform strain rates throughout, these trajectories can be more representative of the strain
histories actually encountered in industrial workpieces. This might lead to greater reliability,
as well as open the opportunity of training microstructural models on the basis of previous
forming experience, without the need for separate classical training trials.

The aim of this paper is to evaluate the Gaussian process modelling, incorporating training
strategies based on sparse and noisy data of the type typically found in many applications,
including metal processing. This has been carried out by studying the microstructure caused
by the cold deformation and subsequent annealing of Al alloy samples. To test the efficacy of
the approach, the training and testing of the microstructural model was undertaken using two
different deformation geometries.

2. Experimental procedure

The material used for this study was a high-purity aluminium alloy containing 1 wt%
magnesium. The alloy was cast, hot-rolled and homogenized by Alcan Aluminium UK Ltd
so that the starting grain size for the deformation tests was approximately 1 mm. This is
typically a difficult grain size for modelling purposes because large grain sizes can lead to
inhomogeneous nucleation of recrystallization. This makes a statistical approach particularly
apposite.

2.1. Training phase

The deformation testing that was required in order to provide the training data for the model
was undertaken using cylindrical samples deformed in approximately plane strain. A large
range of strains was produced by compressing long cylindrical rods of diameter 10 mm with
the compression direction perpendicular to the axis of the cylinder (geometry I in figure 1(a)).
This deformation geometry is essentially in plane strain since there is negligible strain along
the cylinder axis. Two deformation tests of this type were performed to give approximate
height reductions of 20 and 40%.
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Figure 1. Geometries for the two non-uniform deformation tests.

2.2. Testing phase

It is possible to test the reliability of the trained Gaussian process on unseen deformation and
annealing trajectories taken from the plane strain compression tests. A more general test of
the model, however, is provided by applying it to another deformation geometry. With this
aim in mind, short cylinders were deformed in axisymmetric compression with a ball-bearing
(geometry II in figure 1(b)). The indenter was 20 mm in diameter and the cylinders were
15 mm in diameter with initial heights of either 7.5 or 10 mm; the indentation was to a depth
of approximately 2 mm.

2.3. Heat treatment and characterization

After the deformation, samples were sectioned as indicated in figure 1. These were annealed
for different lengths of time (1-60 min) and at five different temperatures (between 325 and
375°C) to give rise to a selection of recrystallized and partially recrystallized samples. As
a result of the non-uniform distribution of straining, the extent of the recrystallization and
the recrystallized grain size varied as a function of the position through each sample. The
samples were then polished and anodized for metallographic examination. The grain size was
evaluated at several locations through each sample. These locations corresponded to areas
of approximately uniform strain, as predicted by finite-element (FE) models (figure 2). For
the plane strain samples, these locations are marked on figure 1(a), and symmetrically related
areas were used to increase the number of measurements. For geometry II, measurements
were made along bands parallel to the strain contours. In some less annealed samples, there
was no recrystallization in regions of low strain.

2.4. FE modelling

Each heat-treated section contained a range of different strain histories. Provided a satisfactory
FE model can be constructed, it is possible to link the observed point by point variation in the
microstructure to the point by point variation in the deformation history. The FE models of the
training and testing deformation geometries were generated using DEFORM™ [12]. Local
strain distributions predicted for each compression geometry are shown in figure 2.
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Figure 2. FE maps showing the predictions of local strain for the two deformation geometries used.
For geometry I the approximate measurement locations are marked with crosses; measurements
made in symmetrically equivalent positions were added to the same data point.

3. Results

As would be expected, given the non-uniform straining, a considerable variation in the extent
of recrystallization and recrystallized grain size was observed in the metallographic sections
following annealing. Figure 3 illustrates the progression of the recrystallization in the plane
strain compressed testing and training samples annealed at 350 °C.

By combining the FE modelling with the metallographic analysis, it was possible to
construct two deformation/microstructure data sets, one for each of the two deformation
geometries. The recorded inputs were the local effective strain (¢ (x, y)), annealing temperature
(T) and annealing time (¢); the output was the local mean recrystallized grain size (d;(x, y)).

The plane strain data set (geometry I) comprised 64 input—output vectors (¢(x, y), T, t,
d;(x, y)) with strains between 0.0 and 1.0 and annealing conditions as described in section 2.3.
The data were obtained from 36 sections taken from the 20 and 40% deformed cylinders. A
subset of these (set A), comprising 45 points from samples annealed at 325, 350 and 375 °C,
was used as the basic training data set. The remaining 19 points (set B) were annealed at 335
and 360 °C. Eleven indentation tests (geometry II) produced 26 points with strains between
0.0 and 0.7 and annealing conditions within the same range as for the plane strain tests. These
are referred to as set C.
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Figure 3. Evolution in the microstructure during the annealing of the cylinders compressed in plane
strain (geometry I) and annealed at 350 °C. (a), (b) Reduced by 20% and (c), (d) reduced by 40%;
(a), (c) annealed for 2 min and (b), (d) for 30 min. For each deformation the most highly-strained
areas, near the centres of the samples, recrystallized first. It can be seen that (a) shows very little
recrystallization while (b), with approximately 2.5 times greater maximum strain in its centre, has
considerably more new grains. After 30 min, recrystallization was almost complete in both samples
except in the regions of lowest strain.

Note that compared with traditional forgings the samples were very small. This meant
that there was an inherent limitation on the statistics of the grain size. Too small a sampling
area would lead to too few grains in the count, giving rise to large scatter. Too large an area
would mean that a single strain trajectory could not be sensibly related to all the grains within
the sampling area. As a result, the method was inherently noisy, and presented an important
test of the approach. In the regions of small recrystallized grain size, up to 180 grains were
measured and gave rise to uncertainties of a few per cent of the mean. Conversely, in regions
for which the measured grain size was large, it was possible to measure only a small number
of grains (<40), yielding larger errors. Furthermore, in some low-strain regions, especially in
the plane strain samples, it was very difficult to distinguish between large recrystallized grains
and original grains that were of a similar size, but were largely undeformed and did not show
features characteristic of deformation such as elongated shapes or shear bands.
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4. Gaussian process models

Similarly to neural networks, Gaussian process models are capable of identifying a relationship
between inputs and outputs in a set of training data. This is then used as a basis for making
predictions of outputs for new input sets. Whereas a neural network directly infers a relation
predicting a single output value for given inputs, a Gaussian process model infers a joint
probability distribution over all possible outputs for all inputs. A certain level of random
Gaussian noise is assumed. The probability distribution is a multi-dimensional Gaussian,
hence the name. This form may not be representative of all systems, but it enables Bayes’
theorem (see the appendix) to be implemented in a simple way. This offers a number of
benefits to the modeller, as explained by MacKay [13, 14]. The advantages over conventional
modelling techniques include: implicit use of Occam’s razor to limit model complexity;
an objective method of comparing models using a likelihood calculated from the training
data; and the estimation of the certainty of any predictions. A brief explanation of Bayesian
theory and its application in Gaussian process models is given in the appendix; more rigorous,
mathematical descriptions of Gaussian processes have been written by various workers, for
example [7-11, 15, 16].

The inference of a joint probability distribution over the data involves inferring a number
of quantities called hyperparameters [8, 9]. These indicate the precision and relevance of the
various input parameters for predicting the outputs. This aspect of training is explained in the
appendix.

Figure 4 illustrates how the training and prediction are performed for a simple two-
parameter problem. If errors in the data can be estimated, they can be entered into the model
to guide the inference of the hyperparameters. This is not necessary, but may help to reject
models that are unrealistically optimistic (fitting data too closely) or pessimistic (over-simple
with high uncertainty). It should be noted that where there is a high density of training
data supporting the predictions, the confidence of the model is high and thus the Gaussian
distribution is sharp. Conversely, for inputs outside its range, or in sparsely populated regions
of input space, predictions will simply be made with large uncertainty so that the user is aware
of their unreliability. As a consequence, for some practical applications it may be best to have
an even distribution of training data across the input space.

A number of parameters are available for a Gaussian process model which indicate the
quality of its fit to the given data set. In training and testing data sets, the measured output for
a set of inputs is often referred to as the target, T. A standard measure of how well a model
such as a neural network has been trained is to compare the predictions of the outputs, p;, with
the targets for the ith elements in an N-dimensional data set, using a formula such as

E=Y (t—p) )

In this work, the training and testing errors quoted are the root mean square (rms) errors given
by (E/N)'/? where N is the number of data points. If the model has generalized well, the
errors should be similar for the training and testing data. If the training error is significantly
smaller, it suggests that the model was over-fitted to noisy points in the training data, so that
it cannot make reasonable predictions for unseen data.

The Gaussian process model predicts not only the most likely output (the mean of the
Gaussian distribution), but also the probability distribution (the standard deviation of the
Gaussian) and thus another quantitative indicator of fit is possible. This is called the likelihood
and it is a measure of the strength with which data are predicted. Instead of taking merely the
difference between the target and prediction, it evaluates the probabilities of the predictions
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Figure 4. Training and prediction using a Gaussian process model. Plot (a) shows experimental
observations of an output y that varies with some input x. It is known that there is some error in
each measurement, indicated by the error bars. To make a prediction at x’, the Gaussian process
model first infers a Gaussian probability distribution across the training data space. The Gaussian
drawn in (b) is the projection of this distribution at x” onto the page. The mean of the Gaussian
gives the most probable value of y for any x, so that a prediction of y’ can be made. It also allows an
estimate of the uncertainty to be made; one standard deviation of the distribution has approximately
a 67% certainty of containing the target value and thus an uncertainty bar may be drawn equal to
the width of the Gaussian. It should be noted that in regions of high data density, the certainty of
the model is increased, the Gaussian sharper and so the uncertainty contours are closer together (c).

(see the appendix). The logarithm of the likelihood, L, is given by

PN
L=—Z|:%+lneki| )
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for all k points in the data set, where ¢ is the standard deviation of the Gaussian at the kth
point.

It should be noted that the greatest likelihood does not necessarily correspond to the
smallest training error. This is because the e; term makes it strongly dependent on the
confidence of the model in various regions of the data space. For example, the training
error may be low if dominated by a few points where the prediction almost equals the target.
However, if the confidence in those regions of the data space is very low, a higher likelihood
may be obtained by a model that makes poor predictions of those points, but slightly better
ones of other points in high-confidence space. The likelihood is less subject to the influence of
noise than is the error, and gives a measure of the ‘plausibility’ of the model. The likelihood
should be considered together with error when evaluating the model as a high likelihood will
result from a poor model as long as a large uncertainty, e, is also predicted.

5. Application of the Gaussian process model

5.1. Formulation of the training data sets

In order that each input parameter is initially treated with equal importance, it is necessary
to normalize the input data. This is especially important in data sets such as that used here
because all the strains lie between zero and one, while annealing temperatures lie between 325
and 375 °C, yet there is no reason to believe that temperature is more important than strain.
All the inputs were scaled linearly to lie between +0.5 and —0.5. As it is well established that
recrystallized structures often show a log—normal grain size distribution [17], the mean of the
logarithms of the grain sizes was used as the output target variable. This also has the advantage
of limiting the spread of output values to within an order of magnitude.

5.2. Training and testing of the Gaussian process model

The first test of any model is to assess its predictive capability. This is best achieved by
training it on one set of data and then testing it on previously unseen data. First, a model
was trained on just the 45 points belonging to set A, with a view to testing it on the 19 points
(set B) which had experienced annealing temperatures not seen during training. It was also
tested for its predictions on the training data. The correlation between the predicted and target
(measured) outputs for the test data is plotted in figure 5 and the rms errors in the predictions
of the Gaussian process model are given in table 1. The normalized log likelihood for each set
of test data is also given, calculated by dividing the value of L (equation (2)) by the number
of points in the test set. It is clear from the figure that the model has not significantly over-
fitted the training data set, in that the predicted against measured graph for the training data
(figure 5(a)) is not noticeably better than that for the unseen test data (figure 5(b)). This is
because during training the model sacrifices an exact fit to the measured outputs in favour
of simpler models with better prospects of generalization. It is also reflected in the fact
that the testing error in table 1 is only about 10% worse than the training error. This is an
important aspect of the current model; normally one does not want to hold back large portions
of the training data set for testing and evaluation of uncertainty since this impoverishes the
training. Instead, it is better to have modelling algorithms that inhibit over-fitting, as here.
The described results suggest that the model has learned the essence of the coupling between
the inputs and the recrystallized grain size. The discrepancy between the gradients of the
best-fit line and the predicted equals measured line shown on figure 5(b) will be discussed
later.



Gaussian process models for recrystallization 695

24 T T T T T T I T T T I T T T T T T 250
= L d
2 L ]
o) L J
o 22 —1158
E i ] G
i) - ] o
N - - g 5
o 2f 4100 o
I i ] o
UJ | . ~
= L 3
3 1 3
% 1.6 — 40
B 1 i
& i

14 {A IR TN N N N T T T N TN N MO A M AN ] 25

1.4 1.6 1.8 2 2.2 2.4
Measured
(a)

22 | [ T | | | T 158
)
j - T —
o
o
E 2- ~100 ®©
¢)] I~ I s 1
= I N
S 18| - 463 @
B - =
> - 3
s . 41 8

- o

= 5
O
3 16| > 140 &2
T -
] L _
D_ -

14 | | ] | | | | 25

1.4 1.6 1.8 2 2.2
Measured
(b)

Figure 5. Plots of the predicted against the measured grain sizes for a model trained on set A.
(a) The ‘predictions’ for the 45 plane strain training points comprising set A and (b) testing on the
remaining 19 plane strain points annealed at temperatures outside the experience of the training
set (set B). The solid line is the 1:1 gradient, the broken line the best-fit line for the points. The
uncertainty bars are for one standard distribution, and thus approximately 67% of measurements
would be expected statistically to fall within them.

A more general test of the trained Gaussian process model is to apply it to a data set (set C)
for a second, previously unseen geometry (geometry II). The results of this test are shown in
table 1 and figure 6(a).

It appears from the plots and from the test errors that the predictions for geometry II are
better than those (set B) made for the same geometry as the training data-set, although all of the
models are consistent with the uncertainty predictions of the Gaussian process. Indeed, the test
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Table 1. A summary of the Gaussian process model for various training and testing scenarios.

Training  Test Training error  Testerror  No of test data Normalized
set set (log pm) (log um)  points L log likelihood
A A 0.092 0.092 45 99  2.20

A B 0.092 0.102 19 42 221

A C 0.092 0.071 26 58 223

A+B C 0.081 0.087 26 61 235

error is about 30% smaller than that achieved for set B. This may be because the indentation
samples had smaller strain gradients and, therefore, correlating grain size with local strain was
more accurate, leading to points closer to the smooth relationship predicted by the Gaussian
process. Alternatively, it could be simply good fortune that the data are fitted particularly well
here. After training on set A, the likelihood per point is less than 1% greater for testing on
set C than set B. This is insignificant compared with the errors in the data.

For the tests described above, the model was trained on just part of the available data
obtained for geometry I, i.e. set A. Next, the Gaussian process model was retrained using the
complete data set (64 points) collected on geometry I before applying it to the new geometry.
The results for this strategy are shown in figure 6(b). It can be seen from table 1 that the training
error for this Gaussian process model is less than for the model that was trained on set A alone,
perhaps because the additional points increase the self-consistency of the data. At the same
time, the likelihood of the test data is increased. As explained in section 4, this indicates an
increase in the accuracy of the predictions, modified by their strength. Hence this decreased
error suggests that the new model either predicts the test points more closely or has increased
confidence due to the higher density of training data. The uncertainty bars in figure 5(b) are
in fact smaller than in figure 5(a), indicating a higher confidence.

In figures 5 and 6, the broken line is the best-fit line for the predictions. In table 2, gradients
are given, with their errors, for all of the training and testing combinations used rather than just
those for which the best-fit line is plotted. In each case the gradient is significantly less than
one. This means that, in general, the Gaussian process models do not predict a sufficiently wide
variation in grain size. For the conditions that lead to small grains, that is low temperature,
short time and high strain, they predict sizes that are larger than those measured. For low
strains and more extensive annealing the predicted grain sizes are too small. If this were due
to errors in the FE model used to calculate the strain histories, then the difference would be
larger for the unseen geometry, since the strain distributions for sets A and B were produced
using identical FE models. This is not true for the model trained on set A alone. The low
gradient might be due in part to noise in the data causing the inferred maximum likelihood
probability distribution to be skewed compared with expectations based on test error. It could
also be because, at the extremes of the training data, the density of information is low and so
the uncertainty is high. The Gaussian process is set up so that its predictions tend to the mean
outside the training set and so predictions at large and small grain sizes can be pulled towards
intermediate values [18]. This is likely to be the most significant cause of the discrepancy. This
tendency towards the mean away from the data is due to the specific form of the covariance
function we used (see the appendix), and is not a feature of Gaussian process models in general.
In principle, the covariance function could be altered to provide for linear extrapolations of
the predicted function away from the data, if that is what prior physical information on the
specific problem in hand assumes.

The importance of this deviation is, in any case, arguable, because it is clear from the plots
that lines with gradients steeper than one could also be drawn within the uncertainty bounds.
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Figure 6. Plots of predicted against measured grain sizes for models tested on the indentation data
(set C, geometry II) after training on (a) the 45 plane strain points comprising set A (geometry I)
and (b) all 64 plane strain points comprising set A plus B.

The model is clearly good enough for process design: it is capable of indicating the conditions
required to obtain larger or smaller recrystallized grains.

5.3. Mapping microstructural variation

The training against testing comparisons highlight the predictive capability of the model. It
is possible to encode the trained Gaussian process model into a metal forming programme
so that microstructure maps can be produced automatically for direct comparison with the
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Table 2. The gradients of the best-fit lines for comparison of predicted with measured values for
each combination of training and test sets used.

Training set ~ Test set Figure  Best-fit gradient
A A 5(a) 0.80 & 0.006

A B 5(b) 0.69 +0.03

A C 6(a) 0.74 +£0.02
A+B A+B 8(a) 0.78 4+ 0.004
A+B C 6(b) 0.56 +£0.01

A+B+C A+B+C 8(b) 0.78 £0.003

Table 3. Analysis of the Gaussian process models trained and tested on the same data sets. The
first two sets are for plane strain data and the third includes the axisymmetric data. The likelihood
increases with the amount of training data, as there are more points to support the inferred probability
distribution. The noise is each Gaussian process model’s estimate from the smoothness of the
training data.

Training error = test error No of data Normalized
Data set (log pm) Noise  points L log likelihood
A 0.092 0.101 45 99  2.20
A+B 0.081 0.089 64 150 234
A+B+C 0.086 0.091 90 212 236

observed metallographic sections (figure 7). Such maps produced for various die geometries
and strain and temperature histories allow the optimization of the microstructure across forged
components without the need for costly forging trials. The software used also enables mapping
of other parameters, including the uncertainty of the predictions. This could be particularly
useful for designing tests to obtain more training data for the Gaussian process model: forgings
could be chosen to provide data across ranges with high uncertainty, where they will be of the
greatest use for improving the model.

In some senses, we would ideally like to run this process backwards, i.e. predict process
parameters that would give a desired microstructure. However, this is clearly more complex
as there may be many combinations of inputs that would give the same outputs, and there is
then the possibility of predicting strains and temperatures that would in fact be impracticable.

5.4. A comparison of different training approaches

The training and testing comparisons have shown that the Gaussian process model is a reliable
indicator of recrystallized grain size. An important question then arises as to what training
should yield the most reliable model for subsequent application. For example, should the
results from both geometries be combined? Table 3 indicates how the models compare. In
this case, the training and test error are the same since the training and test data are the same.
The noise given is that estimated by the Gaussian process model, from the smoothness of the
variation in measured grain size with the input parameters in the training data set. It can be
seen that the noise is comparable with the errors; that is, it is directly related to the closeness
of the predictions to the measurements.

The normalized log likelihood increases with the amount of training data, since the inferred
relationship between the inputs and outputs is supported more strongly by a higher density of
points, i.e. the Gaussian probability distribution is sharper, giving greater confidence in the
model predictions of targets. Increasing the training set from A to A plus B improves this
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Figure 7. Comparison of predictions and measurements of the grain size in the representative
indentation samples for a Gaussian process model trained on all plane strain data. The samples
were annealed for 10 min at (a) 325 °C, (b) 360 °C and (c) 375°C.
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Figure 8. Plot showing predicted against measured grain sizes after the Gaussian process model
has been trained and tested on (a) the complete plane strain data set A plus B (geometry I) and
(b) on set A plus B plus C (all plane strain and all indentation points).

factor by approximately 7%, although the further improvement for the addition of set C is
insignificant. This suggests that provided one believes (as in this case) that the data set is
governed by a single underlying relation, it is best to combine all the data across the sets to
train the Gaussian process model.

When the model is trained on plane strain data alone, the error is decreased by the addition
of a second set of points. This can be explained by an improvement in the fit of the Gaussian to
the data, so that more points are predicted more accurately. When the axisymmetric set is also
included, the test error is greater since more points are poorly predicted. This is probably due
to some discrepancy between the best-fit relationships for the plane strain and axisymmetrical
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Figure 9. Recrystallized grain size predictions of the Gaussian process model after training on
all data from non-uniform deformation tests holding two of the three input variables constant and
varying the third. The constant conditions are a strain of 0.5, a temperature of 350 °C and an
annealing time of 10 min. In (a) the symbols represent the experimental data: the full circles from
geometry I tests and the squares from geometry II. It can be seen that the model has generalized
well and has predicted a smooth curve rather than attempting to fit training data exactly.
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geometries or differences in the way the FE software treats the different conditions. It could
also be affected by underlying physical processes that are not accounted for in the FE method,
for example, texture development, leading to different rates of hardening and anisotropy in the
samples.

The results of the testing on the training sets are plotted in figures 5(a) and 8. The
bars marked on the plots represent the standard deviation of the probability distribution and
can be regarded as contours of certainty about the prediction. Probability theory states that
approximately two-thirds of data should fall within these bars. For all three tests, a greater
fraction of points have error bars crossing the predicted equals measured line. This suggests
that the Gaussian process model might have overestimated its own uncertainty and that in fact
the predictions are better than expected.

A further observation that can be made from the plots is that the size of the uncertainty bars
decreases as the amount of training data increases. As the model becomes more certain, due
to increased evidence, the Gaussian probability distribution becomes sharper and the standard
deviation, which gives the bar sizes, decreases. This is in agreement with the expectation from
the likelihoods calculated and confirms that optimal training is obtained by using the maximum
data set.

5.5. The predicted variation in grain size with input variables

One of the main advantages of the Gaussian process models is that they perform multivariate
nonlinear analysis. Nevertheless, once trained it is helpful to plot out slices through the
multi-parametric domain in order to compare the modelled response with basic metallurgical
understanding.

The model trained on the complete set of data (sets A plus B plus C) was interrogated
to investigate the predicted relationships between the grain size and the individual inputs.
This was accomplished simply by holding two of the inputs constant and varying the third.
In effect, this is taking two-dimensional sections through the four-dimensional space of the
model. Figure 9 shows typical predictions. They can be seen to be qualitatively similar to
the observations of others on static recrystallization [19]. It is also clear from figure 9(a)) that
the model has inferred a smooth relationship between the input and outputs despite the noisy
training data; that is, it has generalized well.

Itis notable that the grain size is predicted to decrease at long annealing times (figure 9(c)).
This is not realistic, but the uncertainty is large enough that it would be possible to draw the
expected increasing trend well within the bounds marked. It is a result of the sparsity of data
at long annealing times and the choice of covariance function, which pulls predictions towards
the mean (see the appendix).

6. Discussion

The training and testing of a Gaussian process model to predict statically recrystallized grain
sizes has been demonstrated. After training, it was able not only to simulate the development
of recrystallized grains in samples similar to those used in training, but also to make good
predictions for a different deformation geometry. The success of the model can be measured
not only by the closeness of its predictions to the measured values, but, in this example
where the data are limited and very noisy, by the fact that the predicted levels of accuracy are
commensurate with the experimental data. The model does not over-fit; instead it generalizes
well to unseen data, despite the noise in the training set, and predicts patterns of behaviour that
agree with accepted trends.
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There are other benefits in using this type of model. First, given an appropriate training set,
it is applicable to any alloys, regardless of any differences in the micromechanical mechanisms
operating. Conventional models are generally only useful for a particular alloy system or even
a single alloy. The Gaussian process model can also be easily retrained on a wider data set as
further data become available.

There are a number of advantages of using non-uniform deformation geometries for
training. First, unstructured approaches such as neural nets and Gaussian process models
always require more data than approaches that start with a model which then needs to be
calibrated. Non-uniform deformation geometries reduce the matrix of specially prepared
samples needed for training, by each one providing a spread of strain trajectories. It may be
possible to use the results of forging trials that are similar to the target geometry, reducing the
influence of errors. Another approach is to use FE modelling to calculate optimized training
forging geometries that will give a large variation in strain trajectories, while being similar
to the industrial product. This ensures that the training set is well distributed throughout the
input space and prevents the model from being naive. Finally, non-uniform strain trajectories
enable the model to take into account strain path effects that monotonic constant strain rate
testing cannot.

In the present study, it appears that the model could be enhanced by improving the quality
of the training data. There is clearly a large amount of noise in both the microstructure
measurements and the strains with which they are correlated. Defining the friction factors
at the die—sample interfaces is particularly difficult in non-uniform geometries, such as those
used in the experimental work. In future work it may be profitable to include training data
from more easily controlled and modelled processes such as wedge rolling. There may also
be other deficiencies in the FE model such as inaccurate material properties. However, the
Gaussian process generalizes well over the data space examined and it is arguable that the
increase in effort needed to significantly improve the model certainty would not be cost or
time effective for industrial purposes, where there are inherently large errors in measurements.
Although the likelihood is increased by increasing the amount of training data, the decrease
in the error when an additional 19 training points (over 40% extra) were used was relatively
small. Furthermore, it must be remembered that the model is not a physical causal model but
a statistical model capable of establishing trends in the data, which can be exploited to make
predictions. It is thus, probably, best aimed at providing general guidelines on how to increase
the microstructural control within certain statistical bounds of certainty rather than the exact
deformation conditions required to produce a specific average grain size precisely.

Ideally, metallurgists would like to understand the underlying physical mechanisms that
determine microstructure and so develop understanding-based models to perfectly predict grain
sizes and orientations. We recognize that Gaussian processes, neural networks and similar
techniques are far from this ideal as they neglect physical processes. To deal with the effects
of such phenomena as texture development and inhomogeneous slip, which have been ignored
in this work, a Gaussian process model would have to be given more input parameters and
considerably more training data to capture relevant patterns.

Physically-based state variable models have been developed to give more accurate
predictions of the recrystallized grain size for the alloy used here, although without the
prediction of uncertainty [4]. However, the approach taken by Furu et al [4] was tested only
within the bounds of the data used to tune the model and for relatively simple deformation
histories, and may prove difficult to apply to industrial workpieces. It required large amounts
of accurate substructural data and so was time consuming to develop.

For complex problems such as this, the Gaussian process model has the potential to provide
guidance in the development of physical models. It can be trained on a large number of inputs,
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some of which may not be relevant, and can give any measurable quantity as an output, for
example subgrain size or misorientation. Given a suitable training set, the significance and
effect of varying individual inputs or combinations can be investigated, as in section 5.5 of this
work. This could lead to more efficient testing to provide additional data for physical models
and indicate the nature of the relationships between the parameters.

This application clearly demonstrates the advantages of a probabilistic approach to the
modelling of real data. First, the estimates of uncertainty allow users of the model to determine
how far they may rely on the predictions for any new processing conditions. This is likely to
find applications in industry where the uncertainty of many factors, such as heat transfer and
friction coefficients, make it difficult to produce accurate input data. In addition, the model
does not require sub-structural information, which might be difficult or expensive to measure
in an industrial plant.

7. Conclusions

The main conclusions of this work can be summarized as follows.

(i) The new type of statistical model investigated, which requires no prior physical
understanding, is capable of being trained to make reliable predictions of metal
microstructures after static recrystallization.

(ii) The approach is capable of finding patterns in limited and noisy data sets such as might
be obtained from industrial workpieces. The models generalize well and are not prone to
over-fitting; they predict reasonable patterns of behaviour.

(iii) The approach is able to calculate a level of uncertainty in making a given prediction. High
uncertainty is predicted for deformation conditions outside the range of training, regions
of data space for which the training set was sparsely populated or those for which the data
was particularly noisy. Confidence is consistent with the test data. This feature allows the
user to take appropriate cautionary measures when applying the model to new conditions.
It is likely to be particularly valuable in applications such as this, where noise is inherent
in making measurements.

(iv) It is believed that this type of model could be a valuable aid to the development of
understanding and of physically-based models for complex metallurgical systems.

(v) It has been shown that used in conjunction with a FE model, non-uniform geometries
can lead to reliable training using complex training data. Such training schedules can be
closer to the end application of the model and can accelerate the training process.

Appendix

Bayes’ theorem states that the posterior probability of a condition is given by the product of
the prior probability and the likelihood in the light of the evidence. For a simple true/false
problem, this can be written as follows:

_ likelihood prior
posterior P(A|B,H) P(B|H)
PB|A,H) = (AD)
P(AH)
evidence

P(B|A, H) is the posterior probability that statement B is true, given that condition A is
observed and that hypothesis H is correct. P(A|B, H) is the probability of observing A if B
is true and H is correct, which is called the likelihood. P(B|H) is the prior probability of B
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being true, without having made any observations. P(A|H) is the evidence: the probability
of observing A if hypothesis H is correct.

A more useful illustration of Bayes’ theorem in the context of this paper is its application
to find the hyperparameters, ®, in a Gaussian process model, and thus enable it to make
predictions of outputs from inputs. In a Gaussian process model, the aim is to choose model
parameters for which the probability of the training data is maximized.

Let us consider a set of training data containing N points, comprising a set of targets (e.g.
a list of grain sizes), ty, with their corresponding vectors of inputs (e.g. strains, annealing
temperatures and times), {xy}. A Gaussian process model is defined by an N-dimensional
covariance matrix, Cy, that describes the closeness to each other of outputs for different inputs,
taking into account the noise, the significance and the scaling of each parameter and so on.
This allows predictions of the output to be made, based on differences between new inputs
and those seen in the training data. Each element of the matrix is given by C, which is a
function of the inputs and the hyperparameters, of which noise is one. For the element ij in
the covariance matrix, C;; = Cy(x;, xj, ®). Cy is called the covariance function and it may
take a range of forms, chosen by the user, including those that simply indicate that similar
inputs give rise to similar outputs and those that embody periodicity [9]. The determination
of hyperparameters is similar to finding the optimum values for parameters in a conventional
equation in order to fit data. In this work, the covariance function used was [8]

I=L (D Oy2

Cr=6 exp[—%;%}+62+038w (A2)
where the set of hyperparameters is ® = {01, 6,, r;, 0,,} and §;; is a delta function with a value
of zero for all i # j. These are explained fully in [8], but described briefly here. The first
term allows the closeness of two outputs, 7; and 7;, to be related to the closeness of their
corresponding inputs; generally if the inputs are close, it is assumed that the outputs will be
also. The length scale r; for the /th input parameter (e.g. temperature) indicates how much the
output will vary relative to any changes in an input; if it is large, then large changes in input
will be needed to affect the output. 6, allows the function to be offset from zero in the case
that the mean of the data and the mean of the Gaussian process are different. The final term is
a noise model, with o,, the standard deviation of noise, which is assumed to be Gaussian.

To find the optimal hyperparameters, equation (A1) becomes

P(zy|{xn}, Cr, ®)P(O)
P(tyl{xn}, Cy)

Since the evidence (the denominator in equation (A3)) is independent of the hyperparameters,
it is effectively constant for a given data set. The prior may be non-informative or use prior
knowledge about the process. To find the optimal hyperparameters we must maximize the
posterior probability (which, in the case of a uniform prior, is equivalent to maximizing the
likelihood). Therefore for a particular training data set and covariance function, the Gaussian
process will select the hyperparameters that give the best predictions of the training data.

In this work it was seen that the predicted outputs tended towards the mean outside the
bulk of the data, causing significant errors in the predictions for large and small grain sizes.
This was due to our choice of covariance function, which was perhaps not the most appropriate
given our prior knowledge. It should be possible to improve the results by encoding a C y which
would, for example, assume a smaller rate of change in outputs away from the training data
or prescribe an increase in an output with a parameter, such as the annealing time. There is
no mathematical reason for this, it is an assumption based on prior physical knowledge. Prior
knowledge should be built into the covariance function where possible, but care should be

POlty, {xn},Cy) =

(A3)
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taken as there may be limits; for example grain size can never become larger than the sample.
Bayesian theory offers the possibility of choosing the most appropriate function from several
alternatives by taking that for which the evidence is greatest.
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