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Abstract
We show how to combine posterior probabilities from an ensemble of models, each of
which estimates the same parameter (or class) but using “independent” data. From this
we describe how to separate out and replace the class prior (or the model-based prior)
of a classifier post hoc and show how this relates to the combination problem. We also
discuss the subtleties of conditional independence, what “independent data” means,
and outline under what circumstances dependent variables can become independent
when conditioned on new information.
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1 Basics

The goal of probabilistic inference is to estimate the probability density function of some param-
eter based on observed data. Certainty is not guaranteed because the data are noisy. Sometimes
we may make multiple estimates of the same parameter using different, perhaps “independent”,
measurements. We examine here the problem of how to combine these under various condi-
tions. In the interests of being didactic we develop the ideas in some detail from first principles.

It should be emphasized from the very beginning that the concept of “independence” is a tricky
one, and simply stating that two things are “independent” without any qualification is an almost
meaningless statement. It is one of the goals of this TN to clarify what we mean by indepen-
dence, or rather, to emphasize that if we say something is “independent” then we should always
qualify this (mathematically).

1.1 Bayes’ theorem

A fundamental and familiar theorem is Bayes’ theorem, which relates two conditional proba-
bilities of quantities A and B

P (A|B) =
P (B|A) P (A)

P (B)
(1)

which follows from P (A,B) = P (A|B)P (B) = P (B|A)P (A). If we consider A as the param-
eter of interest, and B as the data, then we often refer to P (A|B) as the posterior probability of
parameter A given a measurement of data B, P (B|A) as the likelihood of getting data B given
parameter A, and P (A) as the prior probability of A. For example, A could be the Teff of a star
and B the observed spectrum. Alternatively, A could be a discrete class, such as “quasar”. A
model for P (A) can involve any information not included in B, which is useful for estimating
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A. For the quasar example this might be the apparent magnitude (there are very few bright
quasars).

Note that P (B) =
∫
A
P (B|A)P (A)dA is the prior probability of observing data B. We are not

interested in this quantity in the current context, i.e. once we have already measured the data
(but it is important in the context of model comparison, where it is called the evidence).

1.2 What do classifiers provide?

Consider a two-way classification problem in which we want to estimate the probability of
class C based on data D. C is the complement of class C. A classifier such as a sup-
port vector machine (when set up to provide probabilities) provides the posterior probability
P (C|D), rather than the likelihood of getting the data given the class, P (D|C). This must of
course be the case if we assign one minus this output as the probability of the other class, i.e.
P (C|D) = 1− P (C|D). In contrast P (D|C) + P (D|C) 6= 1 in general.1

Some classification models are constructed to provide likelihoods. For example, the kernel
density method models the density of the data for each class separately, so for a two-class
problem it is clearly providing P (D|C) and P (D|C). If we only use these two quantities in the
inference then we are implicitly using equal class priors, P (C) = P (C) = 1/2 (assuming the
density estimates are separately normalized for each class). In such cases we use the ratio of
these two likelihoods, which is related to the posterior via Bayes’ theorem

P (C|D) =
P (D|C)P (C)

P (D)

=
P (D|C)P (C)

P (D|C) P (C) + P (D|C)P (C)

=
1

1 + P (D|C)P (C)
P (D|C)P (C)

. (2)

The priors cancel if equal.

1.3 No important distinction between priors and posteriors

There is nothing special about a prior. For example, we could write Bayes’ theorem2 involving
three parameters by conditioning everything on a third parameter (or measurement, or assump-

1Some people confuse P (D|C) and P (C|D) at first. A simple example will help. Imagine a country in which
all cars are red, but half of all trucks are red and the other half are blue. You observe a red vehicle on the road but
don’t see whether it’s a car or truck (there are no other vehicles). The observation, D, is “red”, and let C be “car”.
P (D|C) = 1 (all cars red) and P (D|C) = 1/2, which clearly don’t add to unity. In contrast, the vehicle must be
either a car or a truck, so P (C|D) + P (C|D) = 1 whatever D is.

2You will of course get the same result if you instead replace B with (B,E) in equation 1. We can always
introduce a new conditioning parameter in this way, provided we introduce it to every term.
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tion etc.) E,

P (A|B,E) =
P (B|A,E)P (A|E)

P (B|E)
. (3)

In the quasar example B could be the apparent magnitude and E could be some additional infor-
mation, such as a particular model for the universe. In that case we might think of P (B|E) as a
magnitude-based classifier, which obviously depends on the universe model (quasar luminosity
function and distances). In that case we would think of P (E) as being the prior probability of
this particular model.

The point is that equation 3 is a general equation for updating probabilities. If we initially have
an estimate of the probability of A based only on information E, i.e. P (A|E), and then we
measure new information B, Bayes’ theorem gives us a way of updating our inference to give
a probability of A based on both B and E, P (A|B,E). The posterior from the first inference,
P (A|E), becomes the prior of the next. It is therefore often more useful to think in terms of
“independent pieces of information” expressed as conditional probabilities, rather than talking
of “priors” and “posteriors”.

However, as it stands equation 3 is not terribly useful for this updating, so let’s look at this in
another way.

2 Updating probabilities (combining classifiers)

2.1 Method for independent classifiers

Consider that we have two sets of information, DA and DB, and we use each to independently
(separately) assess some parameter (or class probability) C. For example DA and DB might be
different spectra, or DA could be a normalized spectrum and DB the source apparent magnitude
or the astrometry. We have (classification) models which estimate P (C|DA) and P (C|DB).
How do we combine them to give P (C|DA, DB), our best estimate based on both pieces of
information?

Using Bayes’ theorem

P (C|DA, DB) =
P (DA, DB|C)P (C)

P (DA, DB)
(4)

If DA and DB are “independent measurements”, then typically they are (or rather, we mean
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they are) conditionally independent given the class, i.e.3

P (DA, DB|C) = P (DA|C)P (DB|C) (6)

so equation 4 can be written

P (C|DA, DB) =
P (DA|C)P (DB|C)P (C)

P (DA, DB)
. (7)

Using Bayes’ theorem to rewrite P (DA|C) as P (C|DA)P (DA)/P (C) and similarly for P (DB|C),
we get

P (C|DA, DB) =
P (DA)P (DB)

P (DA, DB)
× P (C|DA)P (C|DB)

P (C)

= a
P (C|DA)P (C|DB)

P (C)
(8)

which defines a: It is a class-independent term depending only on the data. As we’ve measured
these data, its value is not interesting here (we are not doing model comparison), so we treat it
as a normalization constant which ensures that

∑
k P (Ck|DA, DB) = 1. Equation 8 is our final

result for combining results from two independent classifiers (where “independent” here refers
to the data being independent in the sense of equation 4). We can easily extend this to include
a third independent piece of information, DE ,

P (C|DA, DB, DE) = P (DA, DB, DE|C)
P (C)

P (DA, DB, DE)

= P (DA|C)P (DB|C)P (DE|C)
P (C)

P (DA, DB, DE)

=
P (C|DA)P (DA)

P (C)

P (C|DB)P (DB)

P (C)

P (C|DE)P (DE)

P (C)

P (C)

P (DA, DB, DE)

= a
P (C|DA)P (C|DB)P (C|DE)

P (C)2
(9)

where a is a new normalization constant. In general, if we have N independent classifiers
n = 1 . . . N each using independent information Dn, then they can be combined as

P (C|D1, . . . , DN) = a

∏n=N
n=1 P (C|Dn)

P (C)N−1
. (10)

This is the equation to use when combining multiple independent classifiers.4 If the Dn are
not independent (conditioned on C), then in general we have to know their joint probability

3In contrast, they are not unconditionally independent in general, i.e.

P (DA, DB) 6= P (DA)P (DB) . (5)

Note also that DA and DB can still be conditionally independent (equation 4) if they are different measurements
of the same thing. Both of these points are discussed in section 4.

4The unconditional independence of DA and DB was incorrectly also assumed in version 1 of this document,
which results in the normalization constant in equation 10 being omitted (i.e. a = 1, as the data priors then
cancel). A simple numerical example shows that

∑
k P (Ck|DA, DB) 6= 1 in general if we assume unconditional

independence.
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distribution. Note that all of the classifiers, P (C|Dn), as well as the prior P (C), are implicitly
assumed to be conditioned on the same background information.

2.2 Class fraction prior

There may arise some confusion as to the role of the “class fraction” prior when combining
models. The class fraction for a given class is the overall fraction of objects of that class in a
population. It may be known for a specific population (e.g. if 70 objects of a sample of 100
are stars, then the star class fraction is 0.7), or, more likely, it may be postulated for a general
population based on more general information (e.g. the fraction of all stars in the universe
brighter than G=19). The class fraction is independent of any specific data we otherwise use in
the inference.

Take the case of classifying stars and quasars based on two classification models – one based on
spectra, DA, and another based on magnitude, DB – and we want to introduce the overall class
fraction of quasars to stars (independent of the magnitude or spectrum), which we take to be
1/100. How do we introduce this class fraction “prior”, which we will call information DE? We
can simply consider this “prior” as a classifier which delivers P (C|DE), albeit it an extremely
simple one because DE is the very simple piece of data “quasars are 100 times rarer than stars”.
So if C is the class “star” then P (C|DE) = 100/101. We can then use equation 9. In that case,
P (C) is the “prior” probability of the object being class C independent of DA, DB or DE . This
probability needs to be equal to what the models for P (C|DA), P (C|DB) and P (C|DE) have
assumed (perhaps implicitly) this prior to be. That is, if the classifier based on the spectrum has
an implicit prior for class C of Q(C), then we require that Q(C) = P (C), and likewise for the
other two classifiers using DB and DE . We can see this more easily if we write down equation 9
explicitly conditioned on the background information, H

P (C|DA, DB, DE, H) = a
P (C|DA, H)P (C|DB, H)P (C|DE, H)

P (C|H)2
. (11)

We now see that all models have to be conditioned on the same background information, H , as
is the original prior, P (C|H). It is often the case (but not necessarily so), that when we express
the class fraction explicitly via DE , then H just represents “no additional information”, in which
case P (C|H) is a uniform prior. In the case of classification with K classes (k = 1 . . . K), this
means P (Ck|H) = 1/K. This may be appropriate for classifiers trained on balanced data sets
(equal class fractions), but is not necessarily so. See Bailer-Jones et al. (2008) section 2.3.2 for
a discussion.

Alternatively, we may have the class fraction “prior” already built into the background infor-
mation H and therefore into the classifiers for DA and DB. Thus the values P (C|DA, H) and
P (C|DB, H) will differ from P (C|DA) and P (C|DB) by some constant multiple. In that case
we don’t need an explicit model for P (C|DE, H), and P (C|H) now includes our “class frac-
tion prior”. In equation 11 DE is the same information as H , so P (C|DE, H) = P (C|H) and
equation 11 reduces to equation 8 with all terms conditioned on H .

We have used this method in Smith et al. (2010) to identify Blue Horizontal Branch stars in
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SDSS data.

3 Replacing prior information

3.1 General method

Sometimes a classification model infers the probability of a class C (or distribution over a
parameter C) based on both some explicit data DA and on a prior (assumptions, information
etc.) Do, yet we would like to modify this prior post hoc. Specifically, we may want to replace
the (often implicit) prior of the model with a different explicit prior. This may be desirable if we
train a classifier on balanced data (equal class fractions) but then want to apply it to a population
which we know has very unbalanced class fractions, but without having to retrain the model.
This was discussed in detail by Bailer-Jones et al. (2008) who introduced a very simple method
for replacing the prior, which we summarize here (see sections 2.3 and 2.4 of that paper).

As the classification output (posterior) is proportional to the product of a likelihood and a prior,
then if we know (or can work out) this “old” prior, then we can simply divide by this and multi-
ply by the new prior, to achieve a modified model. Let P (C|Do) be the old prior, P (C|DA, Do)
the classification outputs from the model which is based on Do, and P (C|Dn) the new prior.
The posterior probability for the modified model is

P (C|DA, Dn) = a P (C|DA, Do)
P (C|Dn)

P (C|Do)
(12)

where a is a normalization constant to ensure that
∑

k P (Ck|DA, Dn) = 1 (see appendix A;
equation 12 is for any one of these classes Ck). This constant is required because in general
the two priors for a given class will not follow the same normalizaton. In Bailer-Jones et al.
(2008) we used the class fractions of the populations which Do and Dn represent as proxies for
the priors (and we showed how P (C|Do), the model-based prior, can be calculated from the
outputs of the original model). Do and Dn may be quite distinct, e.g. equal and non-equal class
fractions respectively. Alternatively, Do may represent a (constant) non-equal class fraction,
and Dn could reflect a class fraction which depends on magnitude. If, when averaged over all
magnitudes, Dn gave the same non-equal class fraction as given by Do, then Dn includes Do.
Equation 12 holds whether or not Dn includes Do (but the value of a may vary).

3.2 Equivalence of prior combination with prior replacement when the
new prior includes the old

Equation 12 – in which we replace Do with Dn – can be compared with equation 8 – in which
we combine DA with DB. Let us re-write the latter equation swapping the symbol DB with Dn

and conditioning the whole thing on Do

P (C|DA, Dn, Do) = a
P (C|DA, Do)P (C|Dn, Do)

P (C|Do)
. (13)
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This holds whether or not Dn and Do are unconditionally independent. Let us now assume that
Dn includes Do, i.e. {Dn, Do} → Dn′ (Do does not include Dn). The equation becomes

P (C|DA, Dn′) = a
P (C|DA, Do)P (C|Dn′)

P (C|Do)
. (14)

This is the same as equation 12. Thus if the “new” prior includes the “old” prior, then combining
the model based on the old prior with the new prior is equivalent to replacing the priors.

4 Conditional independence

When are measurements “independent”? Why did conditional independence (equation 4) apply
in the classifier combination, but not unconditional independence?

4.1 Repeated measurements

We first look at repeated measurements. Suppose we make two noisy measurements, D1 and
D2, of the same quantity C. These might be two measurements of the flux of a star, for example.
Consider two cases.

A. If we have no knowledge of and make no model of the value of C, then D1 and D2

are not independent, because we know they are of the same thing; so D1 is our best
estimate of D2 (and vice versa).

B. If, instead, we assume some value for – or model of – C, then we know that D1

and D2 differ from C only by the noise. If the noise in the two measurements is
independent, then these two measurements are independent conditional on C.

In case A our measurement D2 tells us something about C and therefore about D1, because
actually D1 and D2 depend on C by construction. But in case B we condition on C and so
already account for what’s common between the two measurements, so they are conditionally
independent. Put mathematically, B says P (D1, D2|C) = P (D1|C)P (D2|C). In contrast A
says P (D1, D2) 6= P (D1)P (D2), i.e. they are not (unconditionally) independent.5

The normal situation is that we assume some model for our measurement process, e.g. a Gaus-
sian with mean C (unbiased measurement) and variance V , and let us assume that V is known
(the measurement precision). In that case our model for an observation Di is the Gaussian
probability distribution P (Di|C, V ). As this is conditioned on C (and V ), then N such mea-
surements, {DN} = (D1, . . . , DN), are independent and so can be combined to estimate the

5One might argue that case A does not represent repeated measurements, because if D1 and D2 are repeated
measurements then they must be conditioned on this assumption.
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parameter using Bayes’ theorem

P (C|{DN}, V ) =
P (C|V ) P ({DN}|C, V )

P ({DN}|V )

=
P (C)

∏i=N
i=1 P (Di|C, V )

P ({DN})
. (15)

4.2 General case

In general D1 and D2 may be conditionally independent (given C), even if they are not repeated
measurements, as a simple example will show.6

Two students take different exams on Monday morning. Let D1 and D2 be the events that
students 1 and 2 respectively get an A grade. We might expect these to be independent in the
sense of P (D1, D2) = P (D1)P (D2). However, it turns out that both students are rugby fans
and that there was a late night rugby match on Sunday night, and attending the match (event
C) reduces the probability of getting an A grade (which means P (Di|C) < P (Di|C)). If we
ignored the information C, and then found out that one student did poorly in her exam, this
would increase the probability (our degree of belief) that there had been a rugby match, which
in turn increases the probability that the other student also did poorly. That is, D1 and D2

become dependent on each other. (We could imagine repeating this many times and finding a
correlation between the scores of the two students.) In other words, the “hidden” (or ignored)
information makes D1 and D2 mutually dependent, i.e. P (D1, D2) 6= P (D1)P (D2) in general.

In contrast, given (taking into account) that C occurs, it is reasonable to assume that the per-
formance of the two students is again independent (the rubgy diversion affects both students
equally). That is, the students’ performances are independent conditional on C. The reason is
that if we already know C, then also knowing D2 doesn’t provide any additional information
about the probability of D1. (Conversely, if we leave out the information C, we can’t be sure
that D1 and D2 are independent: there may be a hidden variable connecting them.) Putting this
mathematically: P (D1, D2|C) = P (D1|D2, C)P (D2|C) in general. If D2 doesn’t provide any
more information about D1 beyond what C provides, then P (D1|D2, C) = P (D1|C), and so
P (D1, D2|C) = P (D1|C)P (D2|C), the case of conditional independence. This is the usual
case in scientifc inference, where we set up a model for the data, and look at the probabilities
of the data conditioned on that model (or parameter of the model). (P (D|C) may be a noise
model, for example.) This applies to the discussion in section 2.

However, whether or not conditional independence applies depends subtly what we are condi-
tioning on. Let D1 be the measurement of the parallax of an object and D2 the measurement
of its apparent magnitude. These statements are conditional on this being the same object,
the “hypothesis” H0. Assuming both quantities to be unconstrained and independent, then
P (D1, D2|H0) = P (D1|H0)P (D2|H0).

6This example has been adapted from http://cnx.org/content/m23258/latest/, where there are also numerical
examples which illustrate these points further.
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FIGURE 1: Left: Hypothesis HB which limits D2 but in which D1 and D2 are independent.
Right: Hypothesis HA in which D1 and D2 are mutually dependent. The solid line represents
the expectation of the relationship and the dashed lines the 95% confidence interval (noise
model) for the data.

Suppose we now introduce a different hypothesis, HB, which introduces the specific relation-
ship between parallax and magnitude shown in Fig. 1 (left panel). Although there is a rela-
tionship (limiting the probability of extreme values of D2), the two quantities are independent.
So again we have conditional independence, P (D1, D2|HB) = P (D1|HB)P (D2|HB), because
given the hypothesis HB, knowing D2 tells us nothing additional about D1.

Consider now a third hypothesis, HA, shown in Fig. 1 (right panel), in which the parallax and
magnitude are not independent. Clearly, knowledge of D2 does now tell us something about
(constrain) D1, i.e. P (D1|D2, HA) 6= P (D1|HA) and hence P (D1|D2, HA) 6= P (D1|HA)P (D1|HB).
So D1 and D2 are not conditionally independent given HA.

We can of course generalize this and think of H not as a model, but some other measure-
ment, parameter or piece of information. The point is that introducing information H may, but
does not necessarily, make two measurements which are initially dependent conditionally in-
dependent (think of the rugby match example), or make two measurements which are initially
independent conditionally dependent (think of starting with HB then introducing HA).

In a real situation we might choose to make D1 and D2 independent. But if the true mea-
surements were actually dependent via a relationship like HA, then we would make incorrect
inferences. In such a case we should rather build a two-dimensional model of P (D1, D2|HA)
and use this in the inference of the parameters of interest.

Some confusion about independence could be averted if we avoided speaking of “unconditional
independence”. All probabilities and knowledge are conditional on something. It helps consid-
erably to identify what that something is.
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4.3 Astrophysical situation

The Gaia Discrete Source Classifier (KS-019, CHL-004, CBJ-040, Bailer-Jones et al. 2008)
will classify objects based on spectra, Dspec, parallax/proper motion, Dast, Galactic coordi-
nates, Dpos, and apparent magnitude, DG. We need to identify which of these, in practice, are
“independent” and so can be modelled separately.

Unconditional on Dspec or Dpos, but conditional on some sensible model for the universe HU ,
Dast and DG are not independent, because HU tells us that fainter objects tend to be more distant
(analogous to the right panel of Fig. 1). So P (Dast, DG|HU) 6= P (Dast|HU)P (DG|HU). If we
now knew that the object was a star, C = Cstar, then Dast and DG are still not independent
conditioned on C, because fainter stars also tend to be more distant. So P (Dast, DG|HU , C =
Cstar) 6= P (Dast|HU , C = Cstar)P (DG|HU , C = Cstar). On the other hand, if we knew that
the object was a quasar, C = Cquasar, then Dast and DG do become independent conditioned
on C, because HU tells us that all quasars have zero expected parallax and proper motion (any
deviation just being noise). We see that the effect of conditioning on a variable depends not
only on what the variable is but possibly also its value.

What about the independence of Dspec and Dast? Conditioned only on HU then they are not
strictly independent, because spikier spectra (which are more likely to be quasars) will generally
have smaller values of the astrometry. But this is because HU implicitly has information about
what quasars look like. So it depends on the details of HU . If we condition on C = Cstar,
then it is fair to assume that they become independent. That is, given that the object is a star
(plus all the general background information about astrophysical objects embodied in HU ), the
astrometry tells us nothing about the spectrum and vice versa. Strictly one could claim that if
the spectrum suggests a very cool dwarf, then this is more likely to be nearer, because such stars
are faint and will only be visible by Gaia if nearby.

Generally, we should not assume independence of the data conditional only on background
information such as HU . But conditional on the class or parameters, we normally would assume
conditional independence (the rubgy match example).

The complementary case of conditional independence of the stellar atmospheric parameters,
given certain data, is discussed in section 2 of CBJ-056.

We examine some practical applications of combining data for Gaia classification in the tech-
nical note CBJ-037, and we use these methods in the classification of Blue Horizontal Branch
stars based on photometry and magnitude in Smith et al. (2010). Bailer-Jones (2011b) com-
bines colour, photometric, parallax and HRD prior information for estimating stellar parameters
from Hipparcos/2MASS data using a Bayesian method (see CBJ-049 for an application of this
method to Gaia).
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A Derivation of the normalization constant

For the sake of illustration we calculate the normalization constant a in equation 12 for a two-
class problem (classes C and C) for the general case where Dn does not necessarily include Do.
Normalization requires P (C|DA, Dn) + P (C|DA, Dn) = 1, so

1 = a

[
P (C|DA, Do)

P (C|Dn)

P (C|Do)
+ P (C|DA, Do)

P (C|Dn)

P (C|Do)

]
(16)

For brevity we define Q ≡ P (C|DA, Do), R ≡ P (C|Do) and S ≡ P (C|Dn) and continue

1

a
=

QS

R
+

(1−Q)(1− S)

(1−R)

=
QS −QRS +R−QR−RS +QRS

R(1−R)

=
R(1−Q− S) +QS

R(1−R)
. (17)

Substituting this into equation 12 gives

P (C|DA, Dn) = a
QS

R
=

QS(1−R)

R(1−Q− S) +QS
(18)
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