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Time series modelling

• heteroscedastic, 
asymmetric noise on 
time and signal 

• non-uniform time 
sampling
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P (Dj |�j , ✓,M) =

Z

tj ,zj

P (Dj |tj , zj ,�j)| {z }
Measurement model

P (tj , zj |✓,M)
| {z }
Time series model

dtjdzj

Measured data Dj = (sj , yj) and uncertainties �j = (�sj ,�yj )

Likelihood of single data point: integrate over unknown true time (t) and signal (z)

Model M with parameters ✓
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Model comparison

Likelihood of all data points is P (D|�, ✓,M) =
Y

j

P (Dj |�j , ✓,M)

Evidence is the likelihood marginalized over the parameter prior

More robust alternative is the leave-one-out cross validation likelihood

P (D|�,M) =

Z

✓
P (D|�, ✓,M)| {z }

likelihood

P (✓|M)| {z }
prior

d✓

Calculate integrals by MCMC 
sampling of posterior

P (Dj |D�j ,�,M) =

Z

✓
P (Dj |�j , ✓,M)
| {z }

likelihood

P (✓|D�j ,��j ,M)
| {z }

posterior

d✓

LCV =
j=JY

j=1

P (Dj |D�j ,�,M)
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Time series model
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• red solid: deterministic 
component

• red dashed: standard 
deviation of stochastic 
component

• black: true data

Deterministic mean plus stochastic variation of constant variance

P (zj |tj , ✓,M) =

1p
2⇡!

e�(zj�⌘(tj))
2/2!2

Gaussian

⌘(tj) =

a

2

cos[2⇡(⌫t+ �)] + b sinusoidal
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Time series model

µz = z0�

Vz =

c⌧

2

(1� �2
)

9
=

; where � = e�(t�t0)/⌧
for t > t0

Ornstein-Uhlenbeck process

A Stationary, Markov, Gaussian process

dz(t) = �1

⌧
z(t)dt+ c1/2N (t; 0, dt)

P (zj |tj , ✓,M) =
1p
2⇡Vz

e�(zj�µz)
2/2Vz with

⌧ relaxation time

c di↵usion constant
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Examples of OU process realizations
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Luminosity variations in ultra cool dwarf stars
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Luminosity variations in ultra cool dwarf stars

Models compared:

• constant (variability just due to measurement noise)

• constant with Gaussian stochastic component

• sinusoid with Gaussian stochastic component

• OU process
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Luminosity variations in ultra cool dwarf stars
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Periodicity in biodiversity over past 550 Myr?
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stochastic process
(OU process)
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Summary

• a Bayesian method for modelling times series

‣ arbitrary time sampling and error models

‣ deterministic and stochastic times series

‣ use of cross-validation likelihood, a robust alternative to the evidence

• applications

‣ light curves of some very cool stars (and quasars) evolve stochastically

‣ no evidence for periodic variation of biodiversity over past 550 Myr

• more information and software:  tinyurl.com/ctsmod

http://www.astroimpacts.org
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Ultra cool dwarf model comparison results

C. A. L. Bailer-Jones: Bayesian time series analysis

Table 4. Log (base 10) LOO-CV likelihood of each model relative to that for the no-model for each light curve (log LLOO−CV − log LNM).

Light curve OUprocess Off+Stoch Sin Sin+Stoch Off+Sin+Stoch No-model p-value

2m0345 3.26 2.07 0.15 2.06 2.66 –13.60 4e-4
2m0913 0.44 0.72 0.23 0.97 0.10 –53.39 7e-4
2m1145a 15.23 8.59 3.01 12.26 11.70 –63.83 <1e-9
2m1145b –0.73 1.96 2.00 2.69 2.95 –39.71 1e-3
2m1146 0.67 0.56 –0.08 0.21 1.17 –26.83 3e-3
2m1334 14.95 12.82 4.06 16.86 16.12 –65.88 1e-9
sdss0539 5.50 1.99 4.93 4.48 4.67 –19.62 3e-5
calar3 3.60 1.43 5.65 5.11 4.28 –28.06 6e-4
sori31 2.04 2.12 1.02 2.59 1.90 –11.16 4e-5
sori33 1.49 0.66 2.14 1.85 2.12 –8.39 2e-3
sori45 6.70 4.32 5.08 6.23 6.32 –29.93 5e-9

Notes. The penultimate column gives the value of the log likelihood for the no-model, log LNM. The last column is the p-value for the hypothesis
test from BJM.

Although the measured data points have negligible timing
uncertainties, they do have a finite duration (the integration
time of the observations), either 5 or 8 min (fixed for a given
light curve). This could be accommodated into the measurement
model (Sect. 2.2) by using a top-hat distribution instead of a
Gaussian. I nonetheless approximate this as a delta function, for
two reasons: (1) it accelerates considerably the likelihood cal-
culations, because it allows us to replace the 2D likelihood in-
tegral (Eq. (7)) with an analytic calculation (Sect. B.2); (2) the
method of calculating the likelihood of the OU process (derived
in Sect. A.2) is only defined for this limit.

6.2. Results: LOO-CV likelihood

I follow the procedure outlined in Sect. 4 to define the priors and
to sample the posterior with MCMC. The results are summarized
in Table 4. A first glance over the table shows that for ten of the
light curves, most of the models are significantly better than the
no-model at explaining the data, often by a large amount.

According to the χ2 test of BJM, all of these objects have a
variability which is inconsistent with Gaussian noise on the scale
of the error bars, so there should be a better model than the no-
model (although it may not be among those I have tested). We
see from the Table that the no-model is not favoured for any light
curve. However, for 2m0913, none of the models is significantly
more likely than the no-model, so there is no reason to “reject” it.
As the no-model is equivalent to the null hypothesis of BJM’s χ2

test, and this gave a p-value of 7e−4, this shows that the p-value
is not a reliable metric for “rejecting” the null hypothesis.

On the other hand, in the three cases where the p-value is
very low – 2m1145a, 2m1334, sori45 – the relative log likeli-
hood for at least one model is high. This suggests that a very
low p-value sometimes correctly indicates that another model ex-
plains the data better, although this is of limited use as we do not
know how low the p-value has to be. But at least it might moti-
vate us to define and test other models. The converse is not true:
a relatively high p-value does not indicate that the null hypothe-
sis is the best fitting model.

We turn now to identifying the best models. For all light
curves, there is no significant difference between Off+Sin+Stoch
and Sin+Stoch, which just means that the offset is not needed.
That is not surprising, because the light curves have zero mean
by construction. For eight of the light curves, the LOO-CV like-
lihood for Sin+Stoch is significantly larger than for Sin, imply-
ing there is a source of (Gaussian) stochastic variability which
is not accounted for by the error bars in the data, {σy j }. This

indicates either an additional source of variance (variability), or
that the error bars have been underestimated. (In only two of
these cases – 2m1145a and 2m1334 – are the differences be-
tween Sin and Sin+Stoch very large.)

Of course, there is no reason a priori to assume that a si-
nusoidal model is the appropriate one. In 9 of the 11 light
curves, the sinusoidal models give a higher likelihood than
the Off+Stoch model, and in the other two cases the value is
not significantly lower. We can therefore state that for none
of the 11 light curves is Off+Stoch significantly better than
the sinusoidal models. But only with five or six light curves
can we say that a sinusoidal model is significantly better than
Off+Stoch. For the remaining light curves, the data (and priors!)
do not discriminate sufficiently between the models, so neither
can be “rejected”.

Turning now to the OU process, we see that this is signifi-
cantly better than all other models only for 2m1145a, but by a
confident margin. In seven other cases the OU process is still
better than the other models, or at least not significantly worse
than the best model, so cannot be discounted as an explanation.
In the remaining three cases – 2m1145b, 2m1334, calar3 – at
least one other model is significantly better than the OU process.

The results for 2m1145a and 2m1145b are interesting, as
these are light curves of the same object observed a year apart.
At one time the OU process is the best explanation, at the other
either a sinusoidal model or Off+Stoch. Although it is plausible
that the object shows different behaviour at different times, e.g.
according to the degree of cloud coverage, we should not over-
interpret this. We should also not forget that another, untested
model could be better than any of these.

To summarize: based just on the LOO-CV likelihood, I con-
clude that 10 of 11 light curves are explained much better by
some model other than the no-model, by a factor of 100 or more
in likelihood. The exception is 2m0913, for which all models are
equally plausible (likelihoods within a factor of ten). Three light
curves can be associated with one particular model: 2m1145a
is best described by the OU process; 2m1334 and calar3 are
best described by a sinusoidal model, the former requiring an
additional stochastic component (Sin+Stoch), the latter could
be either with or without it (Sin). This would seem to be con-
sistent with a rotational modulation of the light curve (but see
the next section). For the remaining seven light curves, no sin-
gle model emerges as the clear winner, although some models
are significantly disfavoured. In three of these seven cases –
2m0345, sdss0539, sori45 – both the OU process and a sinu-
soid model explain the data equally well (for 2m0345 and sori45

A89, page 9 of 16
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Parameter posterior PDFs: 
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Parameter posterior PDFs: 2m1145a
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Parameter posterior PDFs:  2m1334
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