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ABSTRACT

Iintroduce a general, Bayesian method for modelling univariate time series data assumed to be drawn from a continuous,
stochastic process. The method accommodates arbitrary temporal sampling, and takes into account measurement
uncertainties for arbitrary error models (not just Gaussian) on both the time and signal variables. Any model for
the deterministic component of the variation of the signal with time is supported, as is any model of the stochastic
component on the signal and time variables. Models illustrated here are constant and sinusoidal models for the signal
mean combined with a Gaussian stochastic component, as well as a purely stochastic model, the Ornstein—Uhlenbeck
process. The posterior probability distribution over model parameters is determined via Monte Carlo sampling. Models
are compared using the “cross-validation likelihood”, in which the posterior-averaged likelihood for different partitions
of the data are combined. In principle this is more robust to changes in the prior than is the evidence (the prior-averaged
likelihood). The method is demonstrated by applying it to the light curves of 11 ultra cool dwarf stars, claimed by
a previous study to show statistically significant variability. This is reassessed here by calculating the cross-validation
likelihood for various time series models, including a null hypothesis of no variability beyond the error bars. 10 of 11
light curves are confirmed as being significantly variable, and one of these seems to be periodic, with two plausible
periods identified. Another object is best described by the Ornstein—Uhlenbeck process, a conclusion which is obviously
limited to the set of models actually tested.
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1. Introduction

When confronted with a univariate time series, we are often interested in answering one or more of three questions.
Which model best describes the data? What values of the parameters of this model best explain the data? What range
of values does the model predict for the signal at some arbitrary time? These are questions of inference from data, and
can be summarized as model comparison, parameter estimation and prediction, respectively.

Probabilistic modelling provides a self-consistent and logical framework for answering these questions. In this article I
introduce a general method for time series model comparison and parameter estimation. The principle is straight forward.
The time series data comprise a set of measurements of the signal at various times, with measurement uncertainties
generally in both signal and time. We write down a parametrized model for the variation of the signal as a function
of time. This could be a deterministic function or a stochastic model or, more generally, a combination of the two. An
example of a combined model is a sinusoidal variation of the mean of the signal on top of which is a Gaussian stochastic
variation in the signal itself, which is not measurement noise. A purely stochastic model is one in which the expected
signal evolves according to a random distribution, e.g. a random walk. Given this generative model and a noise model for
the measurements, we then calculate the likelihood distribution of the data for different values of the model parameters.
Rather than identifying just the single best fitting parameters, I use a Monte Carlo method to sample the posterior
probability density function (PDF) over the model parameters. In addition to providing uncertainties on the inferred
parameters, this also provides a measure of the goodness-of-fit of the overall model, in the form of the marginal likelihood
(evidence), or the cross-validation likelihood (defined here). In this way we can identify the best overall model from a
set, something which frequentist hypothesis testing can be notoriously bad at (e.g. Berger & Sellke 1987, Kass & Raftery
1996, Jaynes 2003, Christensen 2005, Bailer-Jones 2009).

There of course exist numerous time series analysis methods which attempt to answer one or more of the questions
posed, so the reader may wonder why we need another one. For example, if we focus on periodic (Fourier) models, then
we can calculate the power spectrum or periodogram in order to identify the most significant periods and to estimate
the amplitudes of the components. If we work in the time domain, we could do least squares fitting of a parametrized
model (e.g. Chatfield 1996, Brockwell & Davis 2002). However, many of these methods can only answer one of the posed
questions, are limited to a restricted set of models or specific types of problems, do not take into account uncertainties
in the signal and/or time, are limited to equally-spaced data, do not provide uncertainty estimates on the parameters, or
make other restrictive assumptions. The method introduced in the present work is quite general, and firmly embedded
in a probabilistic approach to data modelling (see, e.g., von Toussaint 2011 for an introduction). This makes it powerful,
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Table 1. Primary notation

symbol definition

85 measured time of ;' event

Os; standard deviation in s;

t; (unknown) true time of the 5" event
Yj measured signal of 7" event

standard deviation in y;

Zj (unknown) true signal of the 5" event

D; = (s;,y;) measurements for the j*" event
0j = (0s,,0y,;) estimated uncertainties in D;
D = {D;} set of measurements for J events
o = {o;} estimated uncertainties in D
Dy,

D_y,

0

Gyj

set of measurements for events in partition k
set of measurements for all events not in in partition k
time series model
= (61, 62, 63), parameters of the time series model
n(t; 61) deterministic model of the expected true signal (TSMod1)
log logarithm base 10
N(z; 1, V) Gaussian in z with mean p and variance V/
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Fig. 1. Example of a measured data set with four events

but at the price of considerably higher computational cost. Yet in many applications this is a price we should be willing
to pay for hard-won data, and should often be preferred to ad hoc, suboptimal recipes.

The first two sections of this article — occupying about a quarter of its length — are dedicated to a complete description
of the method: Section [2] covers the method itself and the likelihood calculation, whereas the model comparison method
described in section [3]is general. The mathematics here is relatively simple and intuitive. More involved is the introduction
of the Ornstein—Uhlenbeck process into the method. This, as well as the numerical approximations which allow the
likelihood integrals to be evaluated more rapidly, are presented in the appendices. Section |4 summarizes how to use the
method. Most of the rest of the paper (about a third in total) is concerned with the application of the method, first to
a simulated time series (section , and then to real astronomical data (section @ These are the light curves of 11 ultra
cool dwarfs (low mass stars or brown dwarfs), which an earlier study has claimed show statistically significant variability.
Although these data are used here primarily for demonstration purposes, this reanalysis of these data is astrophysically
interesting, identifying a possible model and possible periods in two cases. I summarize and conclude in section [7}

The method developed here is related to the artmod method introduced in Bailer-Jones (2011; hereafter CBJ11),
which is a model for time-of-arrival time series. The present method extends this to model time series with noisy signal
values at each measured time.

The notation used is summarized in Table [Il

2. The time series method
2.1. Data and model definition

We have a set of J events, each defined by its time, ¢, and signal, z. For each event j, our measurement of the time of the
event, t;, is s; with a standard deviation (estimated measurement uncertainty) o, and our measurement of the signal of
the event, z;, is y; with a standard deviation (estimated measurement uncertainty) o, (see Figure|l). That is, ; and z;
are the true, unknown values, not the measurements. Define D; = (s;,y;) and o; = (05, 0y,). The measurement model
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z=n(t) /'w

true signal z

t:tj

true time t

Fig. 2. Conceptual representation of the stochastic nature of the signal component of the time series model, P(z;|t;, 0, M)
(in red) of the true signal, z, at a true time ¢; (here shown as a Gaussian).

(or noise model) describes the probability of observing the measured values for a single event given the true values and
the estimated uncertainties: it gives P(Djlt;, z;,0;). The o; are considered fixed parameters of the measurement model,
and the conditioning on the measurement model is implicit (because I do not want to compare measurement models in
this work).

M is a stochastic time series model with parameters 6. It specifies P(t;, 2;|6, M), the probability of observing an
event at time ¢; with signal z;.

The goal is (1) to compare the posterior probability of different models M, and (2) to determine the posterior PDF
over the model parameters for a given M. After describing the measurement and time series models in the next two
subsections, I will then show how to combine them in order to calculate the likelihood.

2.2. Measurement model

If ¢t and z have no bounds, or can be approximated as such, and the known measurement uncertainties are standard
deviations, then an appropriate choice for the measurement model is a two-dimensional (2D) Gaussian in the variables
(sj,y;) for event j. If we assume no covariance between the variables then this reduces to the product of two 1D Gaussians

1 —(s;—t5)%/202 1 —(y:—2:)2 /252
P(Dj‘tj,Zj,O'j) e (sj—t;)%/2 ;= e (yj—2;)"/2 vi (1)

B V27os, V2moy,

(The two terms are normalized with respect to s; and y; respectively.) If we had other information about the measurement,
e.g. asymmetric error bars, strictly positive signals, or uncertainties which are not standard deviations, then we should
adopt a more appropriate distribution.

2.3. Time series model

Without loss of generality, the time series model can be written as the product of two stochastic components
P(t,2;10, M) = P(z;lt;, 0, M)P(t;]0, M) (2)

which I will refer to as the signal and time components respectively. For many processes it is appropriate to express the
signal component using two independent subcomponents: the stochastic model itself and a deterministic function which
defines the time-dependence of its mean. This stochastic subcomponent describes the intrinsic variability of the true
signal of the physical process at a given time, with the PDF P(z;|t;,0", M). I refer to this as TSMod2. An example is a
Gaussian )

Pl — = o= (zemlt)?/2w?

P(z;lt;,60', M) Torw e (3)
where 0’ = (n,w) are the parameters of the distribution: n[t;] is the expected true signal at true time ¢;; w is a parameter
which reflects the degree of stochasticity in the process. This is illustrated schematically for a single point in Figure [2]
The Gaussian is just an example, and would be inappropriate if z were a strictly non-negative quantity.

The relationship between the expected true signal and the true time is given by a deterministic function, 7(t; 61),
where 0; denotes another set of parameters. I refer to this deterministic subcomponent as TSMod1. A simple example is
a single frequency sinusoid

n = g cos2m(vt + ¢)| + b (4)

which has parameters 6; = (a,v, ¢,b), the amplitude, frequency, phase, and offset. Having parametrized the signal
component of the time series model in this way, it is convenient to write 8’ = (61, 63) in general, where #3 = w in the
example of equation [3]
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The second component of the time series model in equation [2] describes any intrinsic randomness in the time of the
events which make up the physical process. This is represented by P(t;|03, M), which I refer to as TSMod3. If there is
no variation in the probability when an event could occur, we should make this constant by using a flat distribution in ¢
between the earliest possible and latest possible times, T and 75,

1
P(t;103, M) = ¢ To = Tx
0 otherwise

if T1<tj<T2

(5)

where 65 = (T, T») are its parameters. This is generally appropriate to modelling light curves (for example), where there
is no concept of intrinsically discrete events: the discreteness arises only because we take measurements at certain times.
There is then no sense in which the probability of an “event occuring” could vary. In contrast, when modelling a discrete
process, such as the times and energies of large asteroid impacts (see CBJ11), we generally will have a time varying
probability of an event occuring.

This three-subcomponent approach (TSModl1,2,3) to the time series model is conceptually a little complex, so let
us consider what it means. We have a physical process in which the expected value of the signal varies with time in a
deterministic manner. This is given by 7(¢;61), e.g. equation 4| At any given true time, the true signal of the process
can vary due to intrinsic randomness in the process. This is described by P(z;|t;, 01,02, M), an example of which is
equation [3] Finally, while the mean of the process signal is considered to vary continuously in time, there may be a time
varying probability that an event could occur at all (e.g. an asteroid impact). This is described by P(t;]03, M). The
stochasticity in the time series model has nothing to do with measurement noise. It is intrinsic to the process.

This description of the signal component as a stochastic model with a time-independent variance and a (deterministic)
time-dependence for the mean we might refer to as a partially stochastic process. A fully stochastic process, in contrast,
is one in which all the parameters of the PDF P(z;|t;, 6, M) have a time-dependence, in which case this decomposition of
the signal component into TSMod1 and TSMod2 is not possible. An example is the Ornstein—Uhlenbeck process, which
will be used in this work. It is described in appendix [A]

The overall time series model is the combination of these three subcomponents

P(tj, 2|0, M) = P(z;t;, 01,02, M)P(t;|03, M) (6)

where 0 = (01, 62, 603). For the cases shown above, this model has seven parameters, = (a,v, ¢,b,w,T1,T>), although
probably we would fix (77,7%) based on inspection of the time range of the data.
Later in section we will look at the specific models and their parametrizations as used in this paper.

2.4. Likelihood

The probability of observing data D; from time series model M with parameters 6 when the uncertainties are o;, is
P(Djlo;,0, M), the event likelihood. This is obtained by marginalizing over the true, unknown event time and signal

P(Dj‘O’j,97M) = P(Dj,tj,zj|aj,9,M) dtdej

tj,Zj

= P(Djﬁj,Zj,Uj,Q,M)P(tj72j|0'j797M) dtdej

tj,zj

:/ P(Djlty, zj,05) P(tj, 2|0, M) dt;dz; (7)
t

Py
71277 . .
Measurement model Time series model

where the time series model and its parameters drop out of the first term because D; is independent of this once
conditioned on the true variables, and the measurement model (via o;) drops out of the the second term because it has
nothing to do with the predictions of the time series model. For specific, but common, situations, this 2D integral can
be approximated by a 1D integral or even a function evaluation (see appendix .

If we have a set of J events for which the ages and signals have been estimated independently of one another, then
the probability of observing these data D = {D,}, the likelihood, is

P(D|c,0, M) = H P(Djlo;,0, M) (8)

where 0 = {0;}.

3. Model comparison
3.1. Evidence

In order to compare different models, M, we would like to know P(M|D, o), the model posterior probability. We can use
Bayes’ theorem to write this down in terms of the evidence, P(D|o, M). This is the probability of getting the observed data
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from model M, regardless of the specific values of the model parameters. Adopting equal prior probabilities, P(M), for
different models, the evidence is the appropriate quantity to use to compare models. One may be tempted to use instead
the maximum value of the likelihood for model comparison, but this is wrong, because it will just favour increasingly
complex models, as these can increasingly overfit the data. For more discussion of this point see, for example, MacKay
(2003) or CBJ11.

The evidence, E, is obtained by marginalizing the likelihood over the parameter prior probability distribution, P(6|M).

E = P(D|o,M) = /P(D,H\a, M) db
4

P(Dlo,0, M) P(|M) db . 9)
———
likelihood prior

Note that the evidence is conditioned on both the measurement model (via o) and the time series model, M. For a given
set of data, we calculate this evidence for the different models we wish to compare, each parametrized by 6. The parameter
prior, P(0|M), encapsulates our knowledge of the prior plausibility of different parameters. (This is independent of o,
which is why it was removed in the above equation.) As the evidence has an uninterpretable scale, we usually examine
the ratio of the evidences of two models, the Bayes factor.

We evaluate the above integral using a Monte Carlo approximation

E~ — Z (D|o,6,, M) (10)

n=1

where the parameter samples, {6, }, have been drawn from the prior, P(8|M). Often this prior is a product of simple,
1D functions (e.g. Gaussian or Gamma PDF's), so it is easy to sample from without having to employ more sophisticated
methods.

3.2. Cross validation likelihood

The evidence is often sensitive to the parameter prior PDF. For example, in a single-parameter model, if the likelihood
were constant over the range 0 < # < 1 but zero outside this, then the evidence calculated using a prior uniform over
0 < 6 < 2 would be half that calculated using a prior uniform over 0 < 6 < 1. In a model with p such parameters
the factor would be 27P. If we had no reason to limit the prior range, then the evidence would be of limited use in
this example. Conversely, in cases where the parameters have a physical interpretation and/or where we have reasonable
prior information, then we may be able to justify a reasonable choice for the prior. But in any case we should always
explore the sensitivity of the evidence to “fair” changes in the prior. A fair change is one which we have no reason not
to make. For example, if there were no reason to prefer a prior which is uniform over frequency rather than period, then
this would be a fair change. (See CBJ11 for an illustration of this on real data.) If the evidence changes enough to alter
significantly the Bayes factors when making fair changes, then the evidence is over-sensitive to the choice of prior, making
it impossible to draw robust conclusions without additional information.

In such situations we might resort to one of the many “information criteria” which have been defined, such as the
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) (e.g. Kadane & Lazar 2004) or the Deviance
Information Criterion (DIC) (Spiegelhalter et al. 2002). The advantage of these is that they are simpler and quicker to
calculate. But they all make (possibly unreasonable) assumptions regarding how to represent the complexity of the model,
and all have been criticized in the literature.

An alternative approach is a form of K-fold cross validation (CV). We split the data set (J events) into K disjoint
partitions, where K < .J. Denote the data in the k*" partition as Dy, and its complement as D_j. The idea is to calculate
the likelihood of Dy, using D_, without having an additional dependence on a specific choice of model parameters. That
is, we want P(Dy|D_g, o0, M), which tells us how well, in model M, some of the data are predicted using the other data.
Combining these likelihoods for all K partitions gives an overall measure of the fit of the model. By marginalization

P(Dk|D,k,O',M) = /P(Dk‘D,k,0',97M)P(9|D,k,0,M)d9
[%

= /P(Dk‘0k797M)P(9|D,k,07k,M)d0 (11)
[%

likelihood posterior

where D_j, drops out of the first term because the model predictions are independent of these data when 6 is specified.
(o0_k and oy, drop out of the first and second terms, respectively, also for reasons of independence.) (Cf. equation 10 of
Vehtari & Lampinen 2002.) If we draw a sample {6, } of size N from the posterior P(8|D_,0_k, M), then the Monte
Carlo approximation of this integral is

1 n=N
Lk (Dk|D k)0, M N z:: Dk|0k79n7M) (12)
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the mean of the likelihood of the data in partition k. I will call Ly the partition likelihood. Note that here the posterior
is sampled using the data D_j only.

Because Ly, is the product of event likelihoods, it scales multiplicatively with the number of events in partition k. An
appropriate combination of the partition likelihoods over all partitions is therefore their product

k=K
Loy = H Ly or logLcy = Zlong (13)
k=1 k

which I call the K-fold cross validation likelihood, for 1 < K < J. If K > 1 and K < J then its value will depend on the
choice of partitions. If K = J there is one event per partition (a unique choice). This is leave-one-out CV (LOO-CV),
the likelihood for which I will denote with Lyoo_cv. If K = 1, we just use all of the data to calculate both the likelihood
and the posterior. This is not a very correct measure of goodness-of-fit, however, because it uses all of the data both to
draw the posterior samples and to calculate the likelihood.

The posterior PDF required in equation[I1]is given by Bayes’ theorem. It is sufficient to use the unnormalized posterior
(as indeed we must, because the normalization term is the evidence), which is

P<9|D,k,0',k7M) 0. P(D,k|a,;€,9,M)P(9|M) (14)

i.e. the product of the likelihood and the prior. Ley therefore still depends on the choice of prior (discussed in section.
However, the likelihood will often dominate the prior (unless the data are very indeterminate), in which case Ley will
be less sensitive to the prior than is the evidence.

There is a close relationship between the partition likelihood and the evidence. Whereas the evidence involves inte-
grating the likelihood (for D) over the prior (equation E[)7 the partition likelihood involves integrating the likelihood (for
Dy.) over the posterior (for D_i) (equation . This is like using D_j to build a new prior from “previous” data. We
can use the product rule to write the partition likelihood as

P(D|o, M)

Lk = P(Dle_k,O'k;,M) = m

(15)

which shows that it is equal to the ratio of the evidence calculated over all the data to the evidence calculated on the
subset of the data used in the posterior sampling. As the same prior PDF enters into both terms, it will, in some vague
sense, “cancel” out, although I stress that there is still a prior dependence.

It is important to realize that the model complexity is taken into account by the model comparison with the K-fold
CV likelihood (and therefore the LOO-CV likelihood), just as it is with the Bayesian evidence. That is, more complex
models are not penalized simply on account of having more parameters. It is, as usual, the prior plausibility of the model
which counts.

3.3. Parameter priors

The model measures mentioned — the evidence, the K-fold CV likelihood, also the DIC — are calculated by averaging the
likelihood over the model parameter space. This parameter space must therefore be sampled, and this requires that we
specify a prior PDF, P(6|M), over these.

We invariably have some information about values of the parameters, such as bounds or plausible values. For example,
standard deviations, frequencies and amplitudes cannot be negative, and a phase (as defined here) must lie be between
0 and 1. Non-negative quantities are common, and for these I adopt the gamma distribution in the applications which
follow. This is characterized by two parameters, shape and scale (both positive). The mean of the gamma distribution is
shape times scale, and its variance is the mean times scale.

The different components of the time series models used in the applications, along with the prior distributions over
their parameters, are shown in Table

We have to assign values for the (hyper)parameters, «, of the prior PDFs. Although we rarely have sufficient knowledge
to specify these precisely, we can use our knowledge of the problem and the general scale of the data to assign them. I adopt
the following procedure for assigning what I call the canonical priors, appropriate for the data which will be analysed in

section |6l Some parameters are set according to the standard deviation of the signal values, ¢, = \/ ﬁ > j (yj —75)%,

where 7; is the mean signal.

— For the Off model (parameter b), I use a Gaussian with zero mean and standard deviation 1-2 times ¢,. The exact
value is determined by visual inspection of the light curve.

— For the Sin model, I use a gamma prior on the frequency, v, with shape=1.5 and scale=0.5 (Fig. . This assigns
significant prior probability to a broad range of frequencies believed to be plausible based on knowledge of the problem,
the temporal sampling, and the total span of the light curves. For the amplitude, a, I use a gamma prior with shape=2
and scale 1-3 times ¢,. The prior over the phase is uniform.

— For the Stoch model (parameter w), I use a gamma prior with shape=2 and scale 1-2 times .
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Table 2. Time series model components with parameters 6 used in this work. The penultimate column shows the prior
PDFs over these parameters, which themselves have (hyper)parameters . These prior PDF's respect the limits on 6 listed
in the final column. U() is the uniform distribution between 0 and 1, so has no free parameters. Note that a in the Sin
model is the peak-to-peak amplitude of the sinusoid. The uniform model for TSMod3 is used throughout (equation .

name function 0 prior PDF, P(0; &) Omin, Omax
TSMod1l
Off b b N (b; mean, sd) —00, 00
Sin % cos[2m (vt + )] a Gamma(a; shape, scale) 0, 00

v Gamma(v; shape, scale) 0, 00

¢ U(9) 0,1
TSMod2
Stoch ﬁ e~ (z=nlt:61])? /20 w Gamma(w; shape, scale) 0, 00
OUprocess  see appendix El T Gamma(T; shape, scale) 0, 00

c Gamma(c; shape, scale) 0, 00

b N (b; mean, sd) —00, 00

plz1] N (p[z1]; mean, sd) —00, 00

v/V[z1] Gamma(y/V[z1];shape,scale) 0,00

1.0

shape=1.5, scale=0.5

PX)
0.6
|

0.4

Fig. 3. Three examples of the gamma PDF, used as the prior for non-negative model parameters. The solid line, with
shape=1.5, scale=0.5, is used as the prior PDF over frequency in units of inverse hours.

— For the OU process, I use a gamma prior on both 7 and ¢ with shape=1.5. 7 is a decay timescale, so I set its
scale parameter to one quarter of the duration of the time series. The long-term variance of the OU process is ¢7/2.
Equating this to cg, I therefore set the scale of the diffusion coefficient, ¢, to be 295 /7. The parameters b and p[z1] are
both assigned Gaussian priors with a standard deviation equal to ¢,. The mean of the former is set to zero, and the
mean of the latter to yi, the signal value of the first data point. The final parameter, \/V[z1], a standard deviation,
is assigned a gamma distribution with shape=1.5 and scale=g,.

This scheme of “data-based” priors was arrived at after some experimentation, and generally the calculating LOO-CV
likelihoods are robust to small changes in the priors (as demonstrated later).

3.4. Markov Chain Monte Carlo (MCMC)

For sampling the posterior I use the standard Metropolis algorithm with a Gaussian sampling distribution with diagonal
covariance matrix. Those model parameters which do not naturally have an infinite range are transformed in order to be
commensurate with Gaussian sampling: parameters with a range zero to infinity (such as frequency) are logarithmically
transformed; phase (which has a range 0-1) is transformed using the logit (inverse sigmoid) function. The standard
deviations of the sampling covariance matrix are set to fixed, relatively small values, typically 0.05-0.1 for the logarith-
mically transformed parameters (these are then scale factors). A consequence of this scaling is that the parameter can
never exactly reach the extreme values (zero for the log transformation), but this is not necessarily a disadvantage. I
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Fig. 4. Simulated sinusoidal data set. The solid red line is the true model; the dashed lines show the +ot,4e variation
about this. The black points show the data set drawn from this model along with their £o¢,e error bars.

experimented with instead using a circular transformation rather than logit for the phase parameter (by taking ¢ mod 1).
While this has an affect on the posterior phase distribution, it barely changed the resulting model average likelihoods.

4. Practical application

Given a data set and a time series model we wish to evaluate, the procedure for applying the model is as follows: (1)
define the (hyper)parameters of the prior parameter PDFs; as well as the standard deviations of the MCMC sampling
PDF and its initial values; (2) select a partitioning of the data (normally we will use LOO-CV, so the choice is unique);
(3) for each partition of the data, use MCMC to sample the posterior PDF, retaining the value of the likelihood at each
parameter sample. Average these likelihoods to get the partition likelihood (equation ; (4) sum the logarithms of the
partition likelihoods to get the K-fold CV log likelihood (equation . Note that each partition provides a posterior
PDF, which we could plot and summarize. In order to calculate the evidence for a model (equation E[), then after step
(1) we sample the prior PDF and use equation

In the applications in this article I adopt the uniform model for the temporal component of the time series model,
TSMod3 (equation . The two parameters of this are fixed to the start and end points of the measured light curve to
include all of the data. (The exact values are otherwise irrelevant, as they are the same for all models for a given light
curve. This effectively removes TSMod3 from the model.) T also assume that the signal component of the measurement
model is a Gaussian. I further assume that the uncertainties on the times are small compared to the time scale on which
the time series model varies. This allows us to replace the 2D integration in the expression for the event likelihood
(equation [7) with an analytic expression, as shown in section This results in significantly reduced computational
times.

In section [B:2] I define the no-model, the model which assumes that the data are just Gaussian variations — with
standard deviation given by the error bars — about the mean of the data. As this model has no parameters, its likelihood,
L™ 5 equal to its LOO-CV likelihood and its evidence. This is therefore a convenient baseline against which to compare
all other models, so in the text and tables I report the LOO-CV likelihood/evidence for all models relative to this, i.e.
log Li,oo_cv — log LNM and E — log LNM (the latter is the logarithm of the Bayes factor).

Once we have calculated these quantities for a number of models, we need to compare them. It is somewhat arbitrary
how large the difference in the log likelihoods must be before we bother discussing them. Clearly very small differences
are not “significant”, as small changes in the priors would produce “acceptable” changes in the likelihoods. Here I identify
two models as being “significantly different” if their log (base 10) likelihoods differ by more than 1. I use this term merely
for the sake of identifying which differences are worth discussing.

5. Application to simulated time series

In this section I demonstrate the method by applying it to data drawn from a known model. The true model, z(¢), is
a sinusoid (equation [4) with amplitude a = 0.02, frequency v = 0.1, phase ¢ = 0, and background b = 0. Fifty event
times are drawn from a uniform random distribution between t = 5 and t = 95. There is no stochastic component.
The measured signal, y, at each time is simulated by adding to z Gaussian random noise with zero mean and standard
deviation o¢ye = 0.01. In order to simulate a typical astronomical light curve — one with long gaps corresponding to
day time — events lying in the range ¢ =20-40 and ¢ =60-80 were removed, leaving 28 events. (We can consider ¢ as
being in units of hours and the signal in units of magnitudes.) The true model and measured data are shown in Figure
(Numerous other experiments on other light curves have also been performed.)
I apply five models to the data, constructed by combining components in Table

— Off4+Sin+Stoch: the single frequency sinusoidal model with offset for TSMod1 (equation, and the Gaussian stochas-
tic subcomponent for TSMod2 (equation . The five adjustable parameters are 6 = (a, v, ¢, b, w).
— Sin+Stoch: as Off+Sin+Stoch, but with the offset b fixed to zero (four adjustable parameters).
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Table 3. Log (base 10) LOO-CV likelihood of each model relative to that for the no-model (log Lyoo_cv — log LNM),
simulated sinusoidal light curve. The last column gives the log likelihood for the no-model, log L™, The first row is for
models using the true value of the signal standard deviation, {ayj} = Otrue = 0.01. The second row is for models using
half the true value.

{oy;} OUprocess Off4-Stoch Sin  Sin+Stoch  Off+Sin+Stoch  no-model

0.01 -0.74 0.19 2.63 2.04 2.40 -21.95
0.005 22.01 2416 12.67 25.93 25.04 -45.85

— Sin: as Sin+Stoch, but with the stochastic component in the signal removed (w — 0; see section for how this is
achieved) (three adjustable parameters).

— Off+Stoch: a simple offset (TSModl) with a Gaussian stochastic subcomponent for TSMod2. This model has two
adjustable parameters 6 = (b, w).

— OUprocess: the time series is modelled using the Ornstein-Uhlenbeck stochastic process, as described in appendix [A]
This has five adjustable parameters 0 = (7, ¢, pu[z1], V]z1],b)

Model parameter priors and MCMC parameters are set following the criteria described in section [3] The method
is then applied — as described in section 4| — to each of the five models, for two cases: (1) the standard deviations in
the measured signal, {ij }, which are our estimated uncertainties, are all set equal to the true value, o6 = 0.01; (2)
{0y, } = Otrue/2 = 0.005, i.e. the uncertainties are underestimated by a factor of two (the light curve itself is not changed).
The resulting values of the LOO-CV log likelihoods are shown in Table

Looking at the first row in this table, we see that all three sinusoidal models are significantly favoured (difference
greater than 1) over the no-model (which has a relative LOO-CV log likelihood of zero by construction), the OU process
and the Off+Stoch model. The true model, Sin, achieves the highest likelihood, although the likelihood is not significantly
lower in the other two sinusoidal models. Inspection of the 1D posterior PDFs of the Sin model for the 28 partitions shows
that the posterior peaks around the true frequency and amplitude in most of the partitions, although it is relatively broad
over amplitude. The phase posterior PDF peaks sharply near to 0 or 1 in about half the partitions, but in the rest is
broader or at intermediate values. Inspection of the posterior PDF's over the two extra parameters in the Off+-Sin+Stoch
model — the offset, b, and the stochastic component standard deviation, w — shows that the mean for the offset has an
average across the partitions of about 0.0025. This just reflects the fact that this particular data set has a small positive
mean signal (of 0.0019). b = 0 generally lies within 1 standard deviation of the mean of the posterior PDF. The mean
value of w in this five parameter model is also not zero, but ranges between 0.004 and 0.007 across the 28 partitions.

Overall, we see a reasonably confident detection of the true model, by a factor of 100 in likelihood relative to the
non-sinusoidal models, and this with a relatively sparse, non-uniform data set and low signal-to-noise ratio (a/ Oy, =2
for all 7). Unsurprisingly it is not possible to distinguish between the different sinusoidal models. Although these provide
some evidence for a non zero b and w, it is not enough to formally favour Sin+Stoch or Off4+Sin+Stoch over Sin.

In the second case (second row of Table [3) the true model is now Sin+Stoch, because the supplied signal standard
deviation is now half the true value: an extra stochastic term is needed to explain the missing variance. This reduces the
likelihood of the no-model. The LOO-CV likelihoods of all models are now much larger relative to this. The Sin model is
poorer than the other models, because it too lacks the stochastic term needed to explain the missing variance. In contrast,
Off+Stoch has a far higher likelihood: It is more important to have the stochastic component than the sinusoidal one in
order to explain these data. The most favoured model is the true one, Sin+Stoch. Its posterior PDF over w is bell-shaped
with a mean of 0.01 and a standard deviation of 0.002 in essentially all partitions. Given that the error bars supplied
with the data were 0.05 and not zero, we might expect that a value of w less than 0.01 would be sufficient to explain the
variance on top of the sinusoid. A larger value is needed, however, because this data set just happens to have a larger
actual variance than explained by ot,ue, as we also saw in the first case.

In this example we have seen that the models lacking the stochastic component have likelihoods which are very sensitive
to the estimated signal standard deviations. As these are usually hard to estimate accurately, we should generally use
a model with a stochastic component (TSMod2) with a free parameter in order to accommodate such missing variance.
Comparing results from this with those from a model without such a component will help us establish whether the
additional variance is required.

6. Application to astronomical light curves
6.1. Background and data

I now apply the method to a set of (sub)stellar light curves. Each light curve shows the variation over time of the
total light received (in the I band) from a very low mass star or brown dwarf, objects collectively referred to as ultra
cool dwarfs (UCDs). The variability of these sources has been the subject of numerous studies, because the light curves
may reveal something about the processes operating in these objects’ atmospheres (e.g. Morales-Calderén et al. 2006,
Bailer-Jones 2008, Radigan et al. 2012). Variability could plausibly occur on timescales of hours to tens of hours due to
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Fig. 5. Ultra cool dwarf light curves, showing the variation in brightness over time. Note that increases in brightness are
downwards in the y axis (more negative magnitudes). 2m1145a and 2m1145b are light curves of the same object, but
observed more than a year apart.

the evolution of surface features, which might be star spots or dust clouds. If the opacity or brightness of these surface
features differs from the rest of the (sub)stellar photosphere, a change in the coverage of the features with time would
modulate the integrated light received by the observer (the stars are not spatially resolved). Another plausible cause of
variability is the star’s rotation when it has inhomogeneous (but otherwise stable) surface features. (The rotation periods
of these objects have been measured to be between a few hours and a few days, e.g. Bailer-Jones 2004, Reiners & Basri
2008.) In general, both mechanisms could generate observable variability.

Here I use a set of 11 light curves previously obtained and analysed by Bailer-Jones & Mundt (2001; hereafter BJM)P_-]
The data are shown in Figure o} In BJM, the light curves were subject to a simple orthodox hypothesis test using the
x? statistic. The null hypothesis was that the light curve was constant, with fluctuations due only to heteroscedastic

1 Tables 1 and 2 of BJM lists the properties of the objects. There are two light curves obtained at different times for the object
2M1145. The label 2m1145a is used in the present work to indicate the shorter duration light curve in Table 2 of BJM, i.e. the
one with tmax =76 hours. 2m1145b labels the longer duration one.
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Table 4. Log (base 10) LOO-CV likelihood of each model relative to that for the no-model for each light curve
(log LLoo_cv — log L"M). The penultimate column gives the value of the log likelihood for the no-model, log LNM.
The last column is the p-value for the hypothesis test from BJM.

light curve  OUprocess Off4+Stoch Sin  Sin+Stoch  Off+Sin+Stoch no-model p-value

2m0345 3.26 2.07  0.15 2.06 2.66 -13.60 4e-4
2m0913 0.44 0.72  0.23 0.97 0.10 -53.39 Te-4
2m1145a 15.23 8.59 3.01 12.26 11.70 -63.83 <le-9
2m1145b -0.73 1.96  2.00 2.69 2.95 -39.71 le-3
2m1146 0.67 0.56 -0.08 0.21 1.17 -26.83 3e-3
2m1334 14.95 12.82  4.06 16.86 16.12 -65.88 le-9
sdss0539 5.50 1.99  4.93 4.48 4.67 -19.62 3e-5
calar3 3.60 143  5.65 5.11 4.28 -28.06 Ge-4
sori3l 2.04 212 1.02 2.59 1.90 -11.16 4e-5
sori33 1.49 0.66 2.14 1.85 2.12 -8.39 2e-3
sori4d 6.70 4.32  5.08 6.23 6.32 -29.93 5e-9

Gaussian noise, with zero mean and standard deviations estimated in the data reduction process. (This is equivalent to
the no-model in the present paper.) The p-value of the x? statistic was calculated, and if less than 0.01 the object was
declared as being “variable” J°| Of the 22 light curves analysed in BJM, 12 were declared as variable in this way, of which
11 are analysed here. (The other 11 light curves are no longer available unfortunately.)

Although this statistical test is widely used in this and other contexts, it is vulnerable to some of the standard —
and valid — criticisms of orthodox hypothesis testing (see CBJ11 and references therein for further discussion). These
are: the p-value is defined in terms of the probability of the x? being as large as or larger than the value observed, i.e
it is defined in terms of unobserved and therefore irrelevant data; the p-value does not measure the probability of the
hypothesis given the data, so does not answer the right question; a low p-value is used to reject the null hypothesis and
therefore accept the (implicit) alternative, but without ever actually testing any alternative, even though the alternative
may explain the data even less well. This final point is important, because all but the most trivial models generally
give a very low probability for any particular data set, so a low p-value per se tells you little. What is important is the
relative likelihoods of different models. At best, a small p-value is just an indication that the null hypothesis may not be
adequate to explain the data, but it is not a substitute for proper model assessment, i.e. model comparison. The onus is
then on us to define alternative models and compare them in a suitable way, which is what I do here. I use the same five
models as were used in section

Although the measured data points have negligible timing uncertainties, they do have a finite duration (the integration
time of the observations), either 5 or 8 minutes (fixed for a given light curve). This could be accommodated into the
measurement model (section by using a top-hat distribution instead of a Gaussian. I nonetheless approximate this
as a delta function, for two reasons: (1) it accelerates considerably the likelihood calculations, because it allows us to
replace the 2D likelihood integral (equation [7)) with an analytic calculation (section [B.2); (2) the method of calculating
the likelihood of the OU process (derived in section is only defined for this limit.

6.2. Results: LOO-CV likelihood

I follow the procedure outlined in section [ to define the priors and to sample the posterior with MCMC. The results
are summarized in Table [4l A first glance over the table shows that for ten of the light curves, most of the models are
significantly better than the no-model at explaining the data, often by a large amount.

According to the x2 test of BJM, all of these objects have a variability which is inconsistent with Gaussian noise
on the scale of the error bars, so there should be a better model than the no-model (although it may not be among
those I have tested.) We see from the Table that the no-model is not favoured for any light curve. However, for 2m0913,
none of the models is significantly more likely than the no-model, so there is no reason to “reject” it. As the no-model is
equivalent to the null hypothesis of BJM’s x? test, and this gave a p-value of 7e™*, this shows that the p-value is not a
reliable metric for “rejecting” the null hypothesis.

On the other hand, in the three cases where the p-value is very low — 2m1145a, 2m1334, sori45 — the relative log
likelihood for at least one model is high. This suggests that a very low p-value sometimes correctly indicates that another
model explains the data better, although this is of limited use as we do not know how low the p-value has to be. But at
least it might motivate us to define and test other models. The converse is not true: a relatively high p-value does not
indicate that the null hypothesis is the best fitting model.

2 BJM then go on to look for significant peaks in the CLEAN periodogram, and identify the variability as non-periodic if there is
no significant peak in the periodogram. This suggests that the variability is not due to a simple rotational modulation, according
to what was later called the “masking hypothesis”: the rapid evolution of surface features “erases” the rotational modulation
signature from the periodogram.

11
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We turn now to identifying the best models. For all light curves, there is no significant difference between
Off+Sin+Stoch and Sin+Stoch, which just means that the offset is not needed. That is not surprising, because the
light curves have zero mean by construction. For eight of the light curves, the LOO-CV likelihood for Sin+Stoch is
significantly larger than for Sin, implying there is a source of (Gaussian) stochastic variability which is not accounted
for by the error bars in the data, {0, }. This indicates either an additional source of variance (variability), or that the
error bars have been underestimated. (In only two of these cases — 2m1145a and 2m1334 — are the differences between
Sin and Sin4Stoch very large.)

Of course, there is no reason a priori to assume that a sinusoidal model is the appropriate one. In 9 of the 11 light
curves, the sinusoidal models give a higher likelihood than the Off+Stoch model, and in the other two cases the value is
not significantly lower. We can therefore state that for none of the 11 light curves is Off+Stoch significantly better than
the sinusoidal models. But only with five or six light curves can we say that a sinusoidal model is significantly better than
Off+Stoch. For the remaining light curves, the data (and priors!) do not discriminate sufficiently between the models, so
neither can be “rejected”.

Turning now to the OU process, we see that this is significantly better than all other models only for 2m1145a, but by
a confident margin. In seven other cases the OU process is still better than the other models, or at least not significantly
worse than the best model, so cannot be discounted as an explanation. In the remaining three cases — 2m1145b, 2m1334,
calar3 — at least one other model is significantly better than the OU process.

The results for 2m1145a and 2m1145b are interesting, as these are light curves of the same object observed a year
apart. At one time the OU process is the best explanation, at the other either a sinusoidal model or Off+Stoch. Although
it is plausible that the object shows different behaviour at different times, e.g. according to the degree of cloud coverage,
we should not over-interpret this. We should also not forget that another, untested model could be better than any of
these.

To summarize: Based just on the LOO-CV likelihood, I conclude that 10 of 11 light curves are explained much better
by some model other than the no-model, by a factor of 100 or more in likelihood. The exception is 2m0913, for which all
models are equally plausible (likelihoods within a factor of ten). Three light curves can be associated with one particular
model: 2m1145a is best described by the OU process; 2m1334 and calar3 are best described by a sinusoidal model, the
former requiring an additional stochastic component (Sin+Stoch), the latter could be either with or without it (Sin). This
would seem to be consistent with a rotational modulation of the light curve (but see the next section). For the remaining
seven light curves, no single model emerges as the clear winner, although some models are significantly disfavoured. In
three of these seven cases — 2m0345, sdss0539, soridd — both the OU process and a sinusoid model explain the data
equally well (for 2m0345 and sorid5 the sinusoidal model needs a stochastic component). For the remaining four light
curves — 2m1145b, 2m1146, sori31, sori33 — the Off+Stoch model is at least as plausible as the other models. This model
describes the data as having a larger Gaussian variance than is described by the error bars (with a possible constant
offset to the light curve in addition). This could betray a variance intrinsic to the UCD, but it could equally well indicate
that the error bars have been underestimated, something which is quite plausible given the multiple stages of the data
reduction and approximations therein.

6.3. Results: posterior PDFs

To calculate the LOO-CV likelihood for a light curve with J events, we had to sample from J different posterior PDF's
— one per partition — each given by equation Here I examine the posteriors for the three light curves which could be
associated with one particular model: 2m1334, calar3, and 2m1145a.

Figure [6] shows the 1D projections of the 5D posterior PDF for the Off+Sin+Stoch model on the 2m1334 light
curve. The most probable model was Sin+Stoch, and the PDFs over the parameters this model has in common with
Off+Sin+Stoch are similar. In the first panel we see that the offset is consistent with being zero, as expected. Most
of the probability for the frequency (second panel) lies between 0.004 and 0.006 hr=!, or periods of 170-250 hr. This is
considerably larger than the periods 6.34+0.4hr (v = 0.16 hr=!) and 1.01 £0.08 hr identified by BJM (at a signal-to-noise
ratio of 6 and 7 respectively). 170-250 hr is also relatively long for a rotation period for a UCD and longer than the
duration of the light curve. Thus the models to which this frequency range corresponds are in fact not periodic (no
complete cycle) but just long term trends. A visual inspection of the light curve supports this. This could be intrinsic to
the UCD or could be a slow drift of the zero point of the photometric calibration.

A more detailed study could overcome this by introducing an explicit trend model which is distinct from a periodic
model. The prior PDF over frequency of the sinusoidal model would then be truncated at low values to ensure that such
a model is truly periodic. This was done in CBJ11, where the evidence was calculated by averaging the likelihoods over
a limited range of the period parameter.

Examining further Figure @ we see strong evidence for a non-zero value of w (the prior permits much smaller
values), indicating that we need a stochastic component to explain variance on top of the (low frequency) sinusoidal
component. Note finally that the posterior PDFs are far narrower than the corresponding prior PDFs (plotted as red
dashed lines), which are essentially flat for three of the parameters (cf. Figure [3). This suggests that the priors are
relatively uninformative, so the results are not very sensitive to their exact choice.

The other light curve for which a sinusoidal model is significantly favoured is calar3. The posterior PDFs of the
three parameters of the Sin model are shown in Fig. [7] for two partitions. The PDFs are very similar for these and all
other partitions. We see two distinct peaks in frequency, at around 0.075hr~! and 0.12hr~!, or periods of 13.3hr and
8.3 hr. Both are plausible rotation periods. In comparison, BJM found peaks in the CLEAN periodogram at 14.0 hr and
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8.5 hr, although at less than five times the noise they were described as “barely significant”. These nonetheless agree
with the periods found in the present analysis to within the uncertainties. As the integrated probability in these peaks in
Figure|7|is very large, then if Sin is the correct model (and not just the most probable of those tested) then these periods
are significant. The double-peaked posterior PDF means that there is evidence supporting models at both periods (or
one is an alias), but Sin is still a single component model. In particular, the posterior PDF over amplitude in Fig. [ﬁ is
the distribution over amplitudes for all models, i.e. for the entire frequency range. In order to determine the best fitting
amplitudes for a model with two sinusoidal components we would need to calculate the posterior PDF for a six parameter
model.

Of the 11 light curves explored here, BJM identified significant periods for 2m1146, 2m1334, sdss0539, and sori31.
The present analysis suggests all of these could be explained by a periodic model, but only for 2m1334 is the periodic
model significantly better than the others (although we just saw that this “period” is actually a trend). Furthermore,
for 2m1146 only the Off+Sin+Stoch model is more significant than the no-model, and then only barely (LOO-CV log
likelihood difference of just 1.17). So there is no strong evidence supporting periodicity in these four light curves.
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Table 5. Log (base 10) LOO-CV likelihood of each model relative to that for the no-model (log Lioo_cv — log LNM),
for the light curve sdss0539. Each line corresponds to different settings of the parameters of the prior PDFs.

priors OUprocess Off+Stoch ~ Sin  Sin+Stoch  Off+Sin+Stoch
canonical 5.50 1.99 4.93 4.48 4.67
X2 scale 5.14 2.02 4.51 4.11 4.13
x4 scale 4.60 1.98 5.08 4.51 4.83

The only other light curve with a clear “winner” model in terms of the LOO-CV likelihood is 2m1145a, for which
the OU process was identified. The PDF's over one partition are shown in Figure [§] Noticeable here is that the posterior
PDFs are not much narrower than the prior PDFs. In Bayesian terms, the Occam factor (the ratio of volume of the
parameter space occupied by the posterior to that occupied by the prior) is not much smaller than one, which means
the data are not providing a strong discrimination over parameter solutions. This can be interpreted to mean that the
model is quite flexible: a wide range of parameter settings are able to explain the data. This is perhaps not surprising
given the nature of the OU process and the low signal-to-noise ratio of the data (the standard deviation of the signal,
Sy, is only 1.7 times the mean error bar, 7,;). Alternatively, we can interpret this similarity between prior and posterior
to mean that we used a comparatively informative (narrow) prior — see next section.

6.4. Results: sensitivity of the LOO-CV likelihood to the prior

An important issue discussed in section is the sensitivity of results to the priors adopted. I investigate this here by
increasing the scale over which the prior PDFs extend. Specifically, I multiply by 2, then by 4, the standard deviation of
Gaussian priors and the scale parameter of beta priors, then re-run the MCMC to recalculate the LOO-CV likelihood.
The results of doing this for the sdss0539 light curve are shown in Table [5} Although the likelihoods do change, they do
not change by more than the factor of ten adopted here to indicate a significant difference. This pattern is generally seen
with the other light curves also. However, there are a few cases in which we can get larger changes in the likelihood for
apparently innocuous changes in the priors. This requires further study.
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Table 6. Log (base 10) evidence of each model relative to that for the no-model, log E — log LM, for the light curve
sdss0539. Each line corresponds to different settings of the parameters of the prior PDFs. Cf. Table

priors OUprocess  Off+Stoch ~ Sin  Sin+Stoch  Off+-Sin+Stoch
canonical 5.38 1.07 3.24 2.31 2.03
X2 scale 4.72 0.30 2.42 0.65 -0.90
x4 scale 3.97 -0.53 1.81 -0.87 -2.63

6.5. Results: Bayesian evidence

I have introduced the LOO-CV likelihood as an alternative to the Bayesian evidence, on the basis that it is less sensitive
to changes in the prior. I investigate this here.

As the no-model has no adjustable parameters, its evidence is equal to its likelihood and its LOO-CV likelihood. I
therefore use this again as a baseline against which to report the evidence. This relative evidence is reported in Table 6] for
sdss0539, for the same models and priors as shown in Table |5} Comparing the first lines between these tables (canonical
priors), we arrive at a similar conclusion based on the evidence as based on the LOO-CV likelihood: the OU process
is the single best model; Off+Stoch and the no-model are significantly less likely. However, based on the evidence we
would now say that the sinusoidal models are also significantly less likely. Examining how the evidence changes with the
priors, we see significant (more than unity) changes for all models, something we do not see for the LOO-CV likelihood
in Table [5] The evidence is indeed more sensitive to the priors in this case. We observe a similar behaviour for other
light curves (although there are cases where doubling the scale of the priors changes the evidence by less than a factor
of ten). Prior sensitivity nonetheless remains an issue for LOO-CV likelihood, and this should always be investigated in
any practical application.

7. Summary and conclusions

This article has introduced three ideas

1. a fully probabilistic method for modelling time series with arbitrary temporal spacing. It can accommodate any kind
of measurement model (error bars) on both the time and signal variables, as well as any functional model for the
signal-time dependence and the stochastic variations in both of these. In contrast to many other time series modelling
methods, it can model a stochastic variation in the time axis too. It can in fact be used to model any 2D data set,
and not just temporal data: with a linear model it offers an alternative solution to the total least squares solution for
data sets with errors in both variables, for example.

2. a cross-validation alternative to the Bayesian evidence, which is based on the posterior-averaged likelihood (combined
over partitions of the data) as opposed to the prior-averaged likelihood. In theory this is less sensitive to the prior
parameter PDF's than the evidence, something confirmed by the initial experiments reported here. Experiments on
simulated data suggest that this metric is an effective means of model comparison. Its main drawback in comparison
to the evidence is that it takes longer to calculate.

3. the use of the Ornstein—Uhlenbeck process in a Bayesian time series model, i.e. one in which we sample rather than
maximize the posterior. (Theoretical results similar to the event likelihood and the recurrence relation for the posterior
PDF — derived in appendix |A|— have been published elsewhere.)

The main purpose of this article was to give a detailed theoretical exposition of the model. A more comprehensive
application to time series analysis problems will be published elsewhere. In the present work I have demonstrated the
method using simulated data, and through an analysis of 11 brown dwarf light curves. The main conclusions of this study
are as follows

— 10 of 11 light curves are explained significantly better by one of the models tested than by the no-model, the “null
hypothesis” that the variability is just due to Gaussian fluctuations with standard deviation given by the error bars
about the mean of the data. “Significantly better” here means the LOO-CV likelihood is at least 100 times larger,
something we might interpret as a 99% confidence level. For comparison, in BJM all 11 light curves were flagged as
variable at a (different) 99% confidence level based on an orthodox x? test of the same null hypothesis. The Bayesian
model comparison performed here has a sounder theoretical basis, gives us more confidence in the results, and supplies
more information. The two methods disagree on 2m0913, which is adequately explained by the no-model here.

— three light curves are described significantly better by one model than any of the others: 2m1145a by the OU process;
2m1334 by a sinusoid with an additional Gaussian stochastic component; calar3 by a sinusoid either with or without
an additional stochastic component. However, the probable periods for 2m1334 are longer than the duration of the
time series, so this is best interpreted as a long-term trend rather than a periodic variation. For calar3 we see two
distinct and significant peaks in the posterior PDF over the frequency, at 0.12hr~! (period=8.3 hr) and 0.075hr~!
(period=13.3 hr). Both had been identified in earlier work, but as barely statistically significant.
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— the other 8 light curves can be described by more than one model, either the OU process, or a constant with stochastic
component or a sinusoid with stochastic component.

It must be remembered that we can only comment on models we have explicitly tested: it remains possible that other
plausible models exist which could explain the data better. Future work with this method will focus on its practical
application to scientific problems, the inclusion of more time series models, as well as further testing of the LOO-CV
sensitivity to the prior PDFs.
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Appendix A: Fully stochastic time series processes

The signal component of the time series model is the PDF P(z;lt;, 6, M). For a physical process which has a well-defined,
time-variable signal on top of which there is some randomness, section [2.3| shows a convenient way of expressing this as
two independent subcomponents: one which describes the time-dependence of the mean of the PDF and the other which
describes the PDF itself and its time-independent parameters, e.g. its variance.

A fully stochastic process, in contrast, is one in which all of the parameters of the PDF can have a time dependence.
Given a functional form for this time dependence, we can in principle just introduce this into 6 and calculate the
likelihood as before. A simple fully stochastic process is one with a constant mean and variance, a white noise process.
This is achieved by setting TSMod1 to a uniform model (n = b in equation [4]) with TSMod2 a Gaussian.

However, incorporating a stochastic process which has memory, such as a Markov process, is more complicated. Here
I show how to introduce a particular but widely used stochastic process, the Ornstein—Uhlenbeck process.

A.1. The Ornstein—Uhlenbeck process

The Ornstein—-Uhlenbeck (OU) process (Uhlenbeck & Ornstein 1930) is a stochastic process which describes the evolution
of a scalar random variable, z. The equation of motion (Langevin equation) for ¢ > 0 can be written

dz(t) = —%z(t)dt—kclﬂj\/'(t;o,dt) (A1)

where 7 and ¢ are positive constants, the relazation time (dimension t) and the diffusion constant (dimension 2%¢t~1)
respectively, dt is an infinitesimally short time interval, A/(¢;0,dt) is a Gaussian random variable with zero mean and
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variance dt, and dz(t) = z(t + dt) — z(t). The OU process is the continuous-time analogue of the discrete-time AR(1)
(autoregressive) process, and is sometimes referred to as the CAR(1) process. In the context of Brownian motion, z(t)
describes the velocity of the particle. There are alternative, equivalent forms of this equation of motion. For more details
see Gillespie (1996).

The OU process is stationary, Gaussian and Markovﬂ The PDF of z(¢) is Gaussian with mean and variance given by

Lz = 2ZU (A.2a)
T 5
V., = 5(1 —v7) (A.2b)

respectively, for any ¢t > to, where zg = z(t=t¢) and
v = e~ (1) (A.3)

Given the initial condition zg at tg, we know the PDF of the process at any subsequent time. The relaxation time, T,
determines the time scale over which the mean and variance change. The diffusion constant determines the amplitude
of the variance. The OU process z(t) is a mean-reverting process: for ¢t — tp > 7 the mean tends towards zero and the
variance asymptotes to ¢r/2 (for finite 7). From this we can derive an update equation to give the value of the process
at time t,

2(t) = zov + m V. (A4)
where n; is unit random Gaussian variable (Gillespie 1996). This is just the sum of the mean and a random number
drawn from a zero-mean Gaussian with the variance at time t. For a given sequence of time steps, (to,t1,...), we can
use this to generate an OU process. Because the time series is stochastic and must be calculated at discrete steps, then
even for a fixed random number seed, the generated time series depends on the actual sequence of steps.

The reader may be more familiar with the Wiener process. This can be considered a special case of the OU process
in which 7 — oo (Gillespie 1996b), in which case v — 1. The update equation becomes z(t) = 2o + n1v/V,, where now
Vz = C(t - to).

A.2. Likelihood of the Ornstein—Uhlenbeck process

A Markov process is one in which we can specify the PDF of the state variable, z; at time t¢;, using
P(z;|tj,zj—1,tj—1,0, M), i.e. there is a dependence on the previous state variable, z;_1. For the OU process, this PDF is
a Gaussian with mean and variance given by equation @ Clearly, the nearer t;_; is to t; the better a measurement of
zj—1 will constrain z;.

We could therefore write the signal component of the time series model (see equation [2)) as

P(zt;) :/ P(2jltj, zj-1,tj-1)P(zj-1,tj-1t;) dtj—1dzj—
tj—1,2j—1
:/ P(zjltj, zj-1,tj-1)P(zj-1ltj—1) P(tj—1) dtj_1dzj— (A.5)
ti—1,2j-1

where conditional independence has been applied in the second line to remove the ¢; dependence from the second two
terms. Note that everything is implicitly conditioned on M and its parameters 6, but these have been omitted for brevity.
The first term under the integral is the PDF for the Markov process we aimed to introduce. The second term is also a
PDF for the Markov process but referred to the previous event. We could replace that with another 2D integral over
(tj_2,2zj—2) of exactly the same form as equation We could then continue recursively to achieve a chain of nested
2D integrals going back to the beginning of the time series, and use that in our likelihood calculation. Although this is
a plausible and general solution for a Markov process, it is not very appealing.

Fortunately a significant simplification is possible. Let us first neglect the time uncertainties. In that case the event
likelihood (equation becomes

P(D, 0,6, M) = / Ply; 121,04, P(i]t. 0, M)P (1,10, M) dz; (A.6)

with t; =s;. P(y;|z;,0y,) is the signal part of the measurement model (the time part has dropped out). If this is Gaussian
in y; —z; (ct. equation and P(z;[t;,0, M) is Gaussian in z;, then equation is a convolution of two Gaussians, which
is another Gaussian, multiplied by P(t;]0, M) (which is independent of z;). A general result is that if f is a Gaussian
with mean py and variance Vy, and g is a Gaussian with mean p, and variance V; then

—+o0
| -2z =fog (A7)

— 00

3 Put loosely: Stationary means that the joint PDF of a set of events from the process is invariant under translations in time;
Markov means that the present value of the process depends only on the value at one previous time step; Gaussian means that
the joint PDF of any set of points is a multivariate Gaussian, in particular the PDF of a single point is Gaussian.
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is a Gaussian with mean pr + pg and variance Vy 4+ V;. For the Gaussian measurement model, f is Gaussian in the

argument y; — z; with gy =0 and Vy = ogj. g is then the time series model.
We now turn specifically to the OU process in order to determine its time series model, P(z;|t;, 8, M). We can derive
this from equation With the state variable now written as z; rather than z(t), this update equation is

Zj = Zj—1v + iy V. (A.8)

with
v = e—(ti—ti)/T (A.9a)
v, = %(1 —?) . (A.9b)

zj has a Gaussian distribution (by definition of the OU process) with mean and Varianceﬂ
ulzi] = ulzalv (A.102)
Vizg] = Vzi—1]v? + V. (A.10b)

respectively (see also Berliner 1996). Specifically, P(z;|t;,0, M) is a Gaussian with this mean and variance, which are

specified by the parameters 6 = (u[z;_1], V[z;-1],v, T, C)E| We will look in a moment at how we estimate u[z;_1] and
V[Zj_l].
We can now write the likelihood, the result of the Gaussian convolution, equations and [A77] as

P(D,lo;,6,M) = P(t,]6, M) / Ply, |1, 0,,)P(=]t. 0, M) dz,

1 —(y; — ply;))?
= P(t;|0, M) ———— exp (J (A.11)
J 27V [y;] 2V]y;]
where the mean and variance of this Gaussian are
wly;l =0 + plz] (A.12a)
Viyl = o, + Vlzj] (A.12b)

respectively. Recall that P(¢;]0, M) is just the time component of the time series model with ¢; =s;. Normally we will
use a uniform model (equation , so this is just a constant.

To estimate plz;_1] and V[z;_1] we make use of the data, y;_;. For an event t;, P(z;|t;,6, M) — which has mean
and variance given by equation @ — is our estimate of the PDF of the state variable at ¢; prior to taking into account
the measurement y;. It is therefore the appropriate thing to use to calculate the likelihood of ¥;, as we have done in
equation But in parallel to this we want to use y; to improve our estimate of z;, i.e. we want to calculate the
posterior PDF of z;. This is given by Bayes’ theorem

P(zjly;,t5) o< P(y;lzj,t5)P(zlt;) (A.13)

(ignoring the normalization constant 1/P(y;|t;), and omitting a lot of dependencies). These two terms are again the
measurement model (so the dependence on t; drops out) and the time series model, both of which are Gaussian in z;.
Thus the posterior PDF over z; is also a Gaussian with mean and varianceﬂ

y; V02l + plzjloy,

W'z = Vi + o2 (A.15a)
V[ = Ve, (A.15b)
)= Ve, -

respectively, where the prime symbol is used to distinguish these posterior moments from the prior ones in equation [A.10]
It is these quantities which we then use at the next event as the estimates of the mean and variance of the state variable.

4 These we calculate explicitly from equation The variance is just the sum of the variances of the two terms in that equation.
Recall that in general V(fg) = f?V(g) + ¢*V(f), and that V (v) = 0.
® If we instead had an actual value of z;_1, then P(z;|t;,0, M) would be Gaussian with mean z;_1v, variance V,, and 6 =
(zj—1,v,T,0).
6 The product of two Gaussians f and g with means p; and py and variances V; and Vj is another Gaussian with
psVg + gV

mean —————>—" and variance ViVs
Vi+V, V4V, ’

(A.14)
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Fig. A.1. Example simulated OU process. The black points (with a uniform random time distribution) have been
simulated from an OU process with parameters 7 = 10, ¢ = 20 and initial conditions t; = 0, z; = 0, to which Gaussian
measurement noise with mean zero and unit standard deviation has been added (as indicated by the black error bars).
This red points show the predictions of this process using the OU process time series model with parameters 7 = 10,
¢ = 20, plz1] = 0, V]z1] = 0. The prediction for each event is a Gaussian in the signal with mean and variance given
equation

Thus, at iteration (event) j, when we calculate equation and hence the likelihood, we use p'[z;_1] and V'[z;_1] as
our estimates of u[z;_1] and V[z;_1]. This is how we introduce a dependence on the previous measurement (the Markov
property). We then calculate the mean and variance of the posterior for z; using equation and will then use these
in the next iteration. Thus we have a recurrence relation for the posterior PDF of z;, at each iteration siphoning off the
relevant quantities in order to calculate the event likelihood.

To initialize the process we must specify initial values u[z1] and V]z1]. We use these in equation @ to calculate
p[y1] and V]y;] and hence the likelihood for the first event, y;, from equation We then calculate the posterior
moments using equation A.15l For the next event, j = 2, these posterior moments are assigned to p[z;—1] and V]z;_1] in
equation and the likelihood calculated. The procedure is iterated through all the events.

The model prediction of the OU process is a Gaussian distribution at each event (at time ¢;) with mean and variance
given by equation [A-I0] Unlike the memoryless time series models, the OU process requires the measurement of the one
previous event in addition to the model parameters in order to predict the next event (this is the Markov property). The
relevant model prediction of event j is therefore given by the prior distribution of equation — which has not yet
looked at y; — and not by the posterior distribution of equation which has.

The parameters of the process are 6 = (u[z1], V]z1],7,¢) (and implicitly the initial time, ¢1). Figure shows an
example of a simulated OU process and the model predictions thereof.

As it stands, the long-term mean of this OU process is zero. We can introduce this long-term mean as an additional
parameter, b, of the model. Equation then becomes

ulz) = nlziolo +b(1—v) (A.16)

The variance is unchanged. (See also Brockwell & Davis 2002, section 10.4.) Note that this corresponds to solving
a different differential equation, namely one in which we have the additional term (b/7)dt on the right-hand-side of
equation (Note that b is the long-term mean of the process rather than the mean of the data.)

Now that we can calculate the likelihood, we can calculate the evidence or sample the posterior PDF. By partitioning
the data set we can also use posterior sampling to evaluate the cross-validation likelihood, as described in section [3.2]
Note that whatever partitioning we do, when it comes to calculating the partition likelihood for data Dy we must still
use all of the data to predict the full sequence of events. That is, for a given 6,,, we predict the entire sequence of J
events using all the data, but only make use of those event likelihoods which are appropriate. Specifically, to calculate the
posterior to use in MCMC sampling (equation we just select the likelihood for the events in D_j, and to calculate
the likelihoods in equation (or we just use the events in Dy. The OU process depends not only on the model
parameters but also on the state at the previous time step, so we should not be changing these time steps by removing
events when predicting the sequence.

A.3. Literature note

I am not aware of an explicit derivation in the literature either of the above posterior recurrence relation (although
Berliner 1996 outlines the same thing) or of the event likelihood for the OU process. Kelly et al. (2009) write down
similar equations for the latter (their equations 6-12), but in a significantly rearranged form. Kelly et al. also assume a
specific initial value (zero) for the initial state variable, zo (their equation 8), whereas I give this a distribution. (In my
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formulation we can achieve a specific initial value by setting V[21] = 0.) My expression for the variance (equation
therefore has an additional term compared to theirs (their equation A5, which is V, in my notation), because they are
conditioning on an fixed value of the process at the previous step whereas I assume this itself has a variance, V[z;_1].
(See also section 10.4 of Brockwell & Davis 2002.) Closely related formulations of this process — but not the likelihood
calculation — are given in Jones (1986; sections 4 and 5) and Kozlowski et al. (2010; appendix).

Appendix B: Simplifying the event likelihood integration

The calculation of the likelihood for a single event in principle requires a 2D integration (equation [7)). This can, however,
be reduced to a 1D integration or even just a function evaluation under certain circumstances.

B.1. Dropping the stochastic signal component of the time series model (TSMod2 bypass)

If TSMod2 is a Gaussian (equation [3)) in which w is very small compared to the scale of signal variations, then the only
contribution to the event likelihood is at the prediction of the signal by TSModl. For given 6;, the magnitude of the
event likelihood is then dictated only by the measurement model, i.e. how close the measured y; is to the prediction z;. In
this limit w — 0, the signal part of the time series model (equation becomes P(z;|t;, 01,602, M) = 6(z; —n[t;;61]). This
gives us a purely deterministic signal in the time series model; we “bypass” TSMod2. The event likelihood integration
(equation |7)) then becomes a 1D integratiorﬂ

P(Djloj,0,M) = | P(Djltj,zj = nltj;01],05) P(t;|0s, M) dt; . (B.1)
tj

Measurement model Time series model

B.2. Small uncertainties on the measured times

If the uncertainty on the measured time, o, is very small compared to the time scale over which the time series model
varies, then the integral over ¢; in the event likelihood will have a significant contribution only for times ¢; close s;. This
must hold for any sensible measurement model or definition of uncertainties. The time part of the measurement model
can then be approximated by the delta function 6(t; — s;), and the integration over ¢; is just unity. If the signal part of
the measurement model is Gaussian, the event likelihood equation (equation @ becomes
1 —(yj—Zj)Q/QO'?v
P(Dj|ayj30aM) :/ = _ € g P(tj:5j72j|97M) de : (B2)
2 \/%Gyj

Measurement model Time series model

When TSMod2 is the Gaussian model this becomes

1 —(yj—2;)° /207, 1 (i —nls::011)2 /202
P(Djlo,. 0, M) = | ————¢ W20 — o= (znlsitil)7 /297 piggs M) dz; B.3
(Dilon,s00) = [ o VT (51105, M) 2, (8.3
Measurement model Time series model
This can be written as
P(D;lay,06.M) = Plssl6a. M) [ flu; = 2)9(2)dz; (B.4)

This is just a convolution of two Gaussian functions, f and g, which is another Gaussian with mean equal to the sum of
the means of f and ¢ and variance equal to the sum of the variances of f and g. The event likelihood is therefore

1 (s —milss: JE
P(D;loy,,0,M) = P(s;|03, M) ——— ¢~ W mnlss01])/2 %) (B.5)
' 2m(oy, + w?)

i.e. involves no integration. The time part of the time series model, P(t; = s,|03, M), is simply evaluated at the measured
time, s;. One particular application of this is to calculate the event likelihood for the no-model, the time series model in
which there is no stochastic component and the deterministic component is just the mean of the signal. This is obtained
by setting w = 0 and n = ¥; in equation @ The signal is therefore expected to be just Gaussian noise fluctuations
about a constant. The total likelihood for the no-model, LNM, is the product of these event likelihoods (equation .
This is a useful baseline model against which to compare the likelihood of other models. As this model has no adjustable
parameters, this likelihood is equal to both the evidence and the K-fold CV likelihood.

7 As we now have no stochastic element in either ¢ or z, the reader may wonder why this integral is over ¢ rather than z, i.e. why
there is an asymmetry. The point is that we need to integrate along the path of the (deterministic) function z; = n[t;; 61]. As this
only requires one parameter, we only have a one-dimensional integral. Whether we parametrize this with ¢; or z; is unimportant,
but having written the function as z; = n[t;; 61] rather than t; = n'[z;;61], t; is the more natural choice.
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B.3. Both TSMod?2 bypass and negligible time uncertainties

If, in addition to a purely deterministic time series model, we also have negligible uncertainties on time, then the time
part of the measurement model in equation [B.1]is a delta function, 4(t; —s;). The likelihood then involves no integration.
If the signal part of the measurement model is a Gaussian, the likelihood is

1 (yi—nls::011)2 /262
P(D]‘O'yj7(97M) = P(SJ|63,M) \/ﬂia_e (yj—nls;:01])°/2 v (B6)
Yj

We also reach this result if we set w = 0 in equation
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