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ABSTRACT

The ability to model the thermomechanicgbrocessingof materialsis an increasinglyimportant
requirementin mary areasof engineering. This is particularly true in the aerospacéndustry where
high materialand processcostsdemandmodelsthat canreliably predictthe microstructureof forged
materials.We analysewo typesof forging, cold forging in which the microstructuredevelopsstatically
uponannealingandhotforging for which it developsdynamically andpresentwo differentmodelsfor
predictingthe resultantmaterialmicrostructure.For the cold forging problemwe employ the Gaussian
processnodel. This probabilisticmodelcanbe seenasa generalisatiomf feedforwardneuralnetworks
with equally powerful interpolationcapabilities. However, asit lacks weightsand hiddenlayers, it
avoids ad hoc decisionsregardinghow complex a ‘network’ needsto be. Resultsare presentedvhich
demonstrat¢he excellentgeneralisatiorcapabilitiesof this model. For the hot forging problemwe have
developedatypeof recurrenneuralnetwork architecturevhichmakespredictionof thetime derivatives
of statevariables. This approachallows usto simultaneouslymodelmultiple time seriesoperatingon
differenttime scalesandsampledat non-constantates.This architectures very generalandlikely to be
capableof modellingawide classof dynamicsystemsandprocesses.
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1. Introduction

The problemin the modelling of materialsforging can

be broadly statedasfollows: Given a certainmaterial
which undegoesa specifiedforging processwhat are
thefinal propertiesof this material?Typical final prop-

ertiesin which we areinterestedarethe microstructural
properties,suchasthe meangrain size and shapeand
the extent of grain recrystallisation. Relevant forging

processcontrol variablesare the strain, strainrate and
temperatureall of which maybefunctionsof time.

A trial-and-errorapproachto solving this problem
has often beentaken in the materialsindustry with
mary differentforging conditionsattemptedo achiese
agivenfinal product. Theobviousdrawbacksof this ap-
proacharelargetime andfinancialcostsandthelack of
ary reliablepredictive capability Anothermethodis to
develop a parameterisedphysically-motvated model,
andto solve for the parametersisingempiricaldata[2].
However, the limitation with this approachis that in
termsof the physicaltheorythe microstructuralevolu-
tion dependsupon several “intermediate” microscopic
variableswhich have to be measuredn orderto apply
themodel. Someof thesevariables suchasdislocation
density are difficult and time-consumingo measure,

making it impracticableto apply suchan approachto
large-scalendustrialprocesses.

Our approacho the predictionof forgedmicrostruc-
tures is thereforeto develop an empirical model in
which we definea parameterisednon-linearrelation-
ship betweenthe microstructuralvariablesof interest
and those easily measuredorocessvariables. Sucha
modelcould be implementedfor example,asa neural
network with thehiddennodesessentiallyplayingarole
analogougo the“intermediate”microscopicvariables.

2. Materials Forging

When a materialis deformed,potentialenegy is put
into the systemby virtue of work having beendoneto
move crystalplanesrelative to oneanother The mate-
rial is thereforenot in equilibrium andhasa tendenyg
to lower its potentialenegy by atomicrearrangement,
throughthe competingprocesse®f recovery, recrys-
tallisation and grain growth. Theseprocessesre en-
couragedy raisingthetemperaturef the material(an-
nealing). Forge deformationprocesseganbe divided
into two classes.In cold working the recrystallisation
rateis solow thatrecrystallisatioressentiallydoesnot
occurduringforging. Recrystallisations subsequently
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Fig. 1: Deformationgeometries. (a) (left) Plane-straindiametrical
compression. The workpieceis subsequentlysectionedinto mary
nominally identical specimensvhich are annealedat differentcom-
binationsof temperatureandtime. The compressiorgivesriseto a
non-lineardistribution of strainsacrosghe specimer(seeFigure2b).
Theseallow usto obtainmary inputtrainingvectors x, for ourmodel
usinga singlecompressiorest. (b) (right) Axisymmetricaxial com-
pression.

achievedstatically by annealing.In contrasthot work-

ing refersto the hightemperaturéorging of materialsn

which recrystallisatioroccursdynamicallyduringforg-

ing. This processs considerablymore complec than
coldworking asnow thefinal microstructureof thema-

terial is generallya path-dependertinction of the his-

tory of the processvariables. This is particularly true

of the Aluminium—Magnesiumalloy considerechere,
which have a relatively long ‘memory’ of the process,
thusnecessitating modelwhich keepsrackof the his-

tory of the material. We shall considera modelfor this

dynamicprocessn Section4.

The ultimate goal of forge modelling is the inverse
problem: Given a setof desiredfinal propertiesfor a
componentwhat is the optimal material and forging
processwhich will realisetheseproperties? This is a
considerablyharderproblemsincetheremaybe a one-
to-mary mappingbetweenthe desiredpropertiesand
the necessaryorging process. This problemwill not
beaddresseth this paper

3. Static Modelling

Cold forging canin generabe modelledwith theequa-
tion

v =F(x) (1)

wherev is amicrostructuralzariable x is thesetof pro-
cessvariablesandF is somenon-linearfunction. In our
particularimplementationwe areinterestedn predict-
ing asinglemicrostructuralvariable,namelygrainsize,
in agivenmaterial(an Al-1%Mg alloy) asafunctionof
thetotalstrain,e, annealingemperaturel’, andanneal-
ing time, t. Theexperimentaket-upfor obtainingthese
datais asfollows. A workpieceof the materialis com-
pressedn plane-straincompressiorat room tempera-
ture,asshowvnin Figurela. After thespecimerhasbeen
annealedit is etchedandthe grainsizesmeasureavith
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Fig. 2: (a) Theleft half of this diagramshawvs the microstructureof
half of a sectionedspecimerwhich hasbeendeformedunderaplane-
strain compression. The materialhas beenannealedat 350°C' for
30 mins producingmary recrystallisedgrains. (b) Theright half of
this diagramis the correspondingstrain contour map producedby
the Finite Elementmodel. Note that the areasof high strainin (b)
correspondo smallgrainsin (a).

an optical microscope.The local strainexperiencedat
eachpointin the materialis evaluatedusinga Finite El-
ement(FE) model,the parametersf this modelbeing
determinedby the known material properties,forging
geometriesfriction factorsandsoon. Figure2b shavs
an exampleof an FE map. Many grain sizeswithin
a single small areaare averagedto give a meangrain
size. Thuswe now have a setof modelinputs,e, T
andt, associatedvith a single meangrain size which
canbeusedto developa staticmicrostructuramodelof
forging. Furtherdetailsof the experimentalprocedure
canbefoundin Sabinetal. [9].

3.1. The Gaussian Process M odel

The Gaussiarprocessmodel [4] [10] assumeshatthe
prior joint probability distribution of a setof any IV ob-
senationsis givenby an N-dimensionalGaussiani.e.

P(vn{xn}, 1, Cn) )

o exp <_%(VN - )" Cy (v - u)) , 3)

wherevy = (v1(x1),v2(%2),-..,un(xN)) is the set
N of obsenationscorrespondingo the setof N in-
put vectors,{xy} = {x1,X2,...,xny}. p andCy,

respectiely themeanandcovariancematrixfor thedis-
tribution, parameteris¢his model. The elementf the
covariancematrix arespecifiedby the covariancefunc-
tion, which is a function of the input vectors,{xx},
and a set of hyperpaametes. A typical form of the
covariancefunctionis

=L (..()) (D)2
1 X, — X,
Cij=916Xp -3 E (ITJ + 65 +035ij .
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4)
Thisequatiorgivesthecovarianceébetweerary two val-
uesw; andv; with corresponding.-dimensionainput
vectorsx; anx; respectiely, andis capableof imple-
mentinga wide classof functions,F, thatcouldappear
in equationl. (TheGaussiamprocessnodelhasascalar
‘output’, v; to model several microstructuralvariables
we would use several independentnodels.) The first



termin equatiord expressesur beliefthatthefunction
we are modellingis smoothlyvarying, wherer; is the
lengthscaleoverwhichthefunctionvariesin thel" in-
putdimension.Thesecondermallows thefunctionsto
have a constanbffsetandthethird is a noiseterm: this
particularform is a modelfor input independenGaus-
siannoise.Thehyperparameters; (I=1...L), 0y, 05,
03, specifythefunction,andaregenerallyinferredfrom
asetof trainingdatain afashionanalogougo traininga
neuralnetwork. They arecalledhyperpaametesrather
thanparametes becausehey explicitly parameterisa
probability distribution ratherthan the function itself.
This distinguisheshemfrom weightsin a neuralnet-
work, which are rather“arbitrary”, in that addingan-
other hiddennode could changethe weightsyet leave
theinput—outputmappingessentiallyunaltered.
Oncethe hyperparameterare known, the probabil-
ity distribution of a new predictedvalue,vy 1, corre-
spondingio anew ‘input’ variable x 1, is

P(unt1|vN, {xN}, XN+1, Cnpa) (5)
(vN41 — ON+1)

2
X exp (—— 952 ) , (6)
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i.e. a one-dimensionalGaussian,where ox4; and
o4y 4, areevaluatedn termsof the covariancefunction
and the training data. We would typically report our
predictionasiny1 + 04,,,. Theseerrorsreflectboth
the noisein the data(third termin equationd) andthe
modeluncertaintyin interpolatingthetrainingdata.The
factthatthe Gaussiamprocessnodelnaturallyproduces
confidenceintervals on its predictionsis importantin
the materialsindustry where material propertiesmust
oftenbespecifiedwithin certaintolerances.

Our modelassumeshat the measurementoiseand
the prior probability of the unknowvn function can be
describedy a Gaussiardistribution. In our application
it is moresensibleto assumehatit is the logarithm of
grain sizeswhich are distributed as a Gaussianyather
than the grain sizesthemseles. This is becauseun-
certaintiesn measuringyrain size scalewith the mean
grain size, and are thereforemore appropriatelyex-
pressedsafractionof themeangrainsizeratherthana
fixedabsolutegrainsize. Moreover, empiricalevidence
suggestshatgrainsizedistributionsarewell described
by alog normaldistribution [7].

3.2. Model Predictions

A Gaussiarprocessnodelwastrainedusinga setof 46
datapairsobtainedrom theplane-strairgeometrywith
0.08 <£<0.79,325°C< T < 375° C,1mins< t <
60 minsastheinputs. Oncetrained themodelwasused
to producepredictionsof grain sizesfor a rangeof the
input variables. Thesepredictions,shavn in Figure 3,
agreewell with metalluigical expectations.

Oneof theassumptiongmplicit in our modelof cold
forging is thatgiventhelocal strainconditions the mi-
crostructureis independenof the material shapeand
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Fig. 3: Grain size predictionsobtainedwith the Gaussianprocess
modeltrainedon datafrom the plane-straincompressiorgeometry
In eachof thethreeplots,two of theinput variablesareheld constant
andthe othervaried. When not beingvaried, the inputs were held
constantat: 7' = 350°C; ¢t = 30 mins; e = 0.5. Thecrossesn
the strainplot aredatafrom thetraining set. As the Gaussiarprocess
is aninterpolationmodel, predictionsat ary valuesof the inputsare
constrainedy theentiretraining set.

forgegeometry In otherwords,we assumehatpredic-
tions canbe obtainedgivenonly the local accumulated
strain (and annealingconditions). This is an impor-
tantrequirementasit meansthata singlemodelcould
be appliedto a rangeof industrialforging geometries,
provided that the local strainscould be obtained(e.g.
with an FE model). We testedthe validity of this as-
sumptionby usingthe Gaussiarprocessnodeltrained
on plane-straindatato predict grain sizesin a mate-
rial compressedisinga differentgeometry namelyan
axial compressior(Figure 1b). As before, after com-
pressiorthe materialwasannealedsectionedandgrain
sizesmeasuredA new FE modelgave the concomitant
local strains. Theseprocessinputs were then usedto
obtainpredictionsof the grain sizesusingthe previous
Gaussiarprocessmodel. Figure 4 plots thesepredic-
tions againstthe measurements.We seeremarkable
agreement—wellvithin the predictederrors—thusval-
idatingour modellingapproachA practicalapplication
of our modelis to producediagramssuchasthatshavn
in Figure5, amapof thegrainsizes.Suchamapis im-
portantfor engineersvho needto know the grainsizes
atdifferentpointsin thematerial,andcanthusasses#s
resistancéo phenomenauchascreepandfatigue.

It should be noted that this method containsother
implicit assumptionsThefinal materialmicrostructure
is very strongly dependentiponthe materialcomposi-
tion. It is well known that even small changesn the
fractionsof thealloying constituentgandby extension,
impurities) can have a strongeffect on the thermome-
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Fig. 4: Gaussiarprocessnmodelpredictionscomparedvith measured
values. The Gaussiamprocessmodel was trainedon datafrom one
compressionajeometry(plane-strainpandits performancevaluated
usingdatafrom anothergeometry(axial-compressionyhich wasnot
seenduringtraining. They = z line is to guidethe eye. Note that
not even a perfectmodelwould producepredictionson this line due
to finite noisein thedata.

Fig. 5: Theleft half is animageof the microstructurein the axially
compressedpecimen.Theright half is the correspondingyrain size
predictionsfrom the Gaussiamprocessnodelshovn asacontourmap.

chanicalprocessingf the material. One way forward
is to include further input variablescorrespondingo
compositio3]. A secondmplicit assumptiomasbeen
the constang of theinitial microstructure.Depending

Recurrent
Inputs, v

External
Inputs, x

Fig. 6: A recurrentneural network architecture(‘dynet’) for mod-
elling dynamicalsystems.The outputs,y, from the network arethe
timederiativesof thestatevariablesof thedynamicakystem.There-
currentinputs,v, arethesestatevariables.Thevaluesof v atthe next
time stepare evaluated(using equation9) from the outputs(via the
recurrentconnectionspndthe previous valuesof v. All connections
andthetwo biasnodesareshavn.

two categories. The first are measuredsuchas grain
size,andthe secondare unmeasuredsuchasdisloca-
tion density Notethattheunmeasuredariablesarenot
intrinsically unmeasurablehis is simply a cateyory for
all of the statevariableswhich we believe to berelevant
but which, for whatever reasonye do not measure.
Bothx andv arefunctionsof time. A generablynam-
ical equationwhich describeghe temporalevolution of
the statevariablesin responseo the externalvariables
is
P v x) | @

whereF is somenon-linearfunction. To a first-order
approximationyve canwrite

ov(t)
ot

v(t+dt) = v(t) + ot . (8)

uponthe materialandthe degreeof thermomechanical ] ]
processing the final microstructuremay retain some 1his dynamicalsystemcanbe modelledwith therecur
‘memory’ of its initial microstructurethus necessitat- rentneuralnetwork architectureshovnin Figure6. This

ing amodelwhich has"initial conditions”asadditional
inputvariables.

4. A Recurrent Neural Network for
Dynamic Process M odelling

4.1. Model Description

For the hot working problem,we assumehatthereare
two setsof variableswhich arerelevantin describing
the behaviour of the dynamicalsystem. The first, x,
areexternalvariableswhich influencethe behaviour of
the system,suchasthe strain, strainrateandtempera-
ture. It is assumedhat all of thesecanbe measured.
The secondset of variables,v, arethe statevariables
which describethe systemitself. Theseare split into

is a discretetime network in which the input dataare
providedasadiscretdist of valuesseparatethy known
time intervals. The input—outputmappingof this net-
work implementsequation? directly: Ratherthanpro-
ducingthestatevariablesattheoutputof thenetwork, as
is oftenthe casewith recurrentnetworks (e.g.[8]), we
producethe time derivativesof the statevariables,for
reasonshatareexpoundedn belov. Thehiddennodes
computea non-linearfunction of both the externaland
therecurrentinputswith a sigmoidfunction (e.g.tanh),
ascorventionallyusedin feedforward networks. A lin-
ear hidden—outpufunction is usedto allow for an ar
bitrary scaleof the outputs. The recurrentpart of the
dynamicalsystemyiz. equatiorB, is implementedvith
the recurrentloops shavn in Figure 6, by settingthe
weightsof theserecurrentoopsto the sizeof thetime
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step,dt, betweensuccessie epochs.Explicity, the k"
recurrentinput attime stepr is givenby

op(T) = we(T = 1) + (T — 1)ét(r)  (9)

wherey (7 — 1) = dv(r — 1) /0t anddt(r) is thetime
betweerepoch(r — 1) andepoch(r).

Theprincipalreasorfor developinga network which
predictsthetime derivativesof the statevariableds that
it canbetrainedon time-seriedatain which the sepa-
rationsbetweertheepochsgét(7), neednotbeconstant:
ateachepochr we simply setthe weightsof the recur
rentfeedbacKoopsto §¢(7). Furthermorethe network
canbetrainedon multiple time seriesn which thetime
scaledsfor eachtime seriesmay be very different. This
is importantin forging applicationsas the forging of
large componentsvould occurover alongertime scale
thanfor smallcomponentsywhereashemicroscopide-
haviour of the materialswould essentiallybe the same
(for a given material). In sucha casewe would want
to incorporatedatafrom both forgingsinto the same
model, but without having to obtain measurementat
the sameratein bothcases.

While our network is similar to that of Jordan[5],
our architecturenastheimportantattributesthat: 1) the
outputsaretime derivativesof the statevariables,and
2) in training the network the error derivatives can be
propagatedia therecurrentconnectiongo thearbitrar
ily distantpast. Our training algorithm canbe seenas
ageneralisatiomf themethoddescribedy Williams &
Zipser[11] extendedto multiple time series.Although
necessarilyonly the feedforward weightsaretrainable,
theinput—hiddenweights,for example,arenonetheless
dependentiponthevaluesof thehiddennodesby virtue
of the recurrentconnections,and this dependeng is
taken into account. Training proceedsby minimizing
anerrorfunction,typically the sumof squaresrror, by
gradientdescenbr a conjugategradientalgorithm.The
weightscanbe updatedafter eachepochof eachtime-
serieq(i.e. RealTime Recurrent.earning[11]), afterall
epochsof all patternspr atary intermediatepoint.

We use a Bayesianimplementationof the training
procedure[6]: multiple weight decay constantsreg-
ularize the determinationof the weights, and a noise
term specifiesthe assumedoise levels in the targets
(v). Someform of regularisationis probablyessential
on accountof the mary intermediateoutputvaluesfor
which their areno targets. The noiseandweightdecay
hyperparameterarecurrentlysetby hand,but couldin
principlebeinferredfrom thedata.

To trainthe network we needat leastonetargetvalue
atatleastoneepoch.Notethatthetrainingalgorithmis
notrestrictedo usetargetsonly for the‘outputs’: errors
canbe propagatedrom ary node.Generallywe would
have valuesof the statevariables(recurrentinputs)for
thefinal epoch.However, in metallugical applications
we may sometimesbe able to obtain additional mea-
surementsit someintermediateepochsthusimproving
the accuray of the derived input—outputfunction. We

will of coursenot have ary target valuesfor the ‘un-
measured'statevariables. Hencethesevariablesmay
not even correspondo ary physicalvariables,instead
acting as ‘hidden’ variableswhich corvey somestate
informationnot containedn the ‘measured’statevari-
ables. Nonethelessve may be able to provide some
loosephysicalinterpretatiorfor unmeasuredariables.
Oncetrained,the network producesa completetime
sequencéor all statevariablesgivena sequencef the
externalinputs,i.e. thedetailsof theforging process.

4.2. Model Demonstration

We now demonstratehe performanceof the modelon
oneparticularsyntheticproblemin which therearetwo
externalinput variablesx, (t) andz,(t), andtwo state
variablesyp; (t) andwva(t), definedby

0
% = 21 —2v1 +8vy — x111 (20)
0
% = Ty — 5V + vy — TovUy . (11)

To mimic realprocesses whichtheexternalinputsare
often constrainedo be positive (e.g.temperature)the
z; andz, sequencesveregeneratedrom constrained
randomwalks: at eachepoch,z; (z2) changeswith a
probability of 0.1 (0.5) by a randomamountuniformly
distributedbetween—0.5 and+0.5 (—1 and+1). The
modulusof z is takento ensureapositve sequenceThe
initial v valueswererandomlyselectedrom a uniform
distribution between—1 and+1.

Equationsl0 and11 arenot analyticallysolvable,so
we usedthe first-orderTaylor expansionin equation8
to evaluatethe v, (t) andwv,(t) sequencesA very small
valueof ¢t wasusedto yield anaccurateapproximation
to thetruecontinuoussequence.

Onehundredsynthetictime seriesweregeneratedn
thisfashionwith differentsequencefr z; andz, and
differentinitial valuesof v; andv,. The sequences
weregeneratedrom ¢ =0 to ¢t =8 inclusive. We chose
to samplethesesequencesat a constantepochsepara-
tion of §¢ =0.1, giving a sequencéengthof 81 epochs.
This time extent and value of 6t sampleshe dynami-
cal sequencewvell: If all x dependencés removedin
equationsdl0and11,we areleft with dampedsinusoidal
oscillationsin v; andw,, with oscillationperiod1 and
e~ ! dampingtimescale2. Thez termsmake the series
someavhatmorecomple, but the overall oscillatorybe-
haviour is retained.

The network wastrainedon 50 of thetime series.In
doing so, the network was only given the initial and
final v valuesand the completez sequencesor each
time series: it did not seethe intermediatev values.
Oncetrained,the network was appliedto the other50
sequences,e. giventhe initial v valuesandthe z se-
quencesthe network producesequencefor v. We see
from Figure7 thatthe network makesexcellentpredic-
tionsof v; andwv, atthefinal epoch.
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Fig. 7: Network predictionsof the final valuesof the v; andvs se-
quencedor the 50 time seriesin the testdatasetplotted againstthe
taget values. The rms errorsare 0.0067and 0.0084for v; andvs
respectiely.

It is now interestingto askwhetherthe network has
managedo correctly learnthe entire v sequences$or
the test data, or whetherit haslearnedsomesimpler
input—outputfunctionwhich just givescorrectv values
atthefinal epoch.Figure8 shovsthez inputsequences,
andthe predictedv sequencefn comparisorwith the
true sequencesThe agreements generallyvery good.
Someof the predictedsequenceésuchasthelowerone
shawvn) deviate from the true sequencet early epochs.
This is probablydueto the differencebetweenthe sta-
tionarydistributionsof the statevariablesat¢ =8 andat
early epochs: The network is explicity trainedto give
predictionsfor the tamget valuesof v. Theselie in the
rangesshavn in Figure 8, which is narraver thanthe
rangeof v valuesat t=0. Therefore,we would not
expectthe network to give suchgoodpredictionsin the
non-overlappingpartof this latterrange.As thedynam-
ical systemis damped,the poorer predictionstendto
occurearlieron. Nonethelesswe seethatthe network
haslearneda goodapproximatiorof thetrueunderlying
dynamicalsequencéor therangeof v valuespresenin
thetamets.

The network hasbeenappliedto a numberof other
syntheticproblemgincludingoneswith non-lineare.g.
v1v2, terms),and a good predicitive capablility is ob-

time

Fig. 8: Externalinput and statevariablesequencefor two different
time seriesin the testdataset. In eachplot the solid lines from top
to bottomarews, v2, z1 andzs. For w1 andvs the solid lines are
the nework predictionsandthe dashedines the true sequencesFor
clarity, the sequencefor v, £1 andz2 have beenoffsetfrom their
true positionshy -1, -3 and-6 respectiely.

sened. The network hasalsobeenableto learnfrom
training data setsin which §t varies within eachse-
quenceandthelengthsof the sequencediffer [1].

5. Summary

We have introducedtwo techniquesor modelling ma-
terialsforging, onein the staticdomainrelevantto cold
forging, andanotherin the dynamicdomainrelevantto
hot forging. The Gaussiamprocessmodelusedin the
former casehasbeendemonstratedo provide a good
predictive capability even when using a small, noisy
dataset. Furthermorethe sufficiency of our inputvari-
ables(for agivenmaterial)hasbeendemonstratettom
the successfubpplicationof the trainedGaussiarpro-
cesanodelto adifferentforging geometry

For the hot forging problemwe have introduceda
generalneuralnetwork architecturefor modelling dy-
namical processes. The power of this network was
demonstratean a syntheticproblem. Furtherdetails
of this model, aswell asits applicationto a rangeof
syntheticproblemswill be presentedn a forthcoming
paper1]. Futurework with this modelwill focusonits
applicationto realdatasetsobtainedrom hotforging.
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