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ABSTRACT

The ability to model the thermomechanicalprocessingof materialsis an increasinglyimportant
requirementin many areasof engineering. This is particularly true in the aerospaceindustry where
high materialandprocesscostsdemandmodelsthat canreliably predictthe microstructuresof forged
materials.We analysetwo typesof forging,cold forging in which themicrostructuredevelopsstatically
uponannealing,andhot forgingfor which it developsdynamically, andpresenttwo differentmodelsfor
predictingtheresultantmaterialmicrostructure.For thecold forging problemwe employ theGaussian
processmodel.This probabilisticmodelcanbeseenasa generalisationof feedforwardneuralnetworks
with equally powerful interpolationcapabilities. However, as it lacks weightsand hiddenlayers, it
avoids ad hoc decisionsregardinghow complex a ‘network’ needsto be. Resultsarepresentedwhich
demonstratetheexcellentgeneralisationcapabilitiesof thismodel.For thehot forgingproblemwehave
developedatypeof recurrentneuralnetworkarchitecturewhichmakespredictionsof thetimederivatives
of statevariables.This approachallows us to simultaneouslymodelmultiple time seriesoperatingon
differenttimescalesandsampledatnon-constantrates.Thisarchitectureis verygeneralandlikely to be
capableof modellingawide classof dynamicsystemsandprocesses.
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1. Introduction

Theproblemin the modellingof materialsforging can
be broadlystatedas follows: Given a certainmaterial
which undergoesa specifiedforging process,what are
thefinal propertiesof this material?Typical final prop-
ertiesin which weareinterestedarethemicrostructural
properties,suchas the meangrain sizeandshapeand
the extent of grain recrystallisation. Relevant forging
processcontrol variablesarethe strain,strainrateand
temperature,all of whichmaybefunctionsof time.

A trial-and-errorapproachto solving this problem
has often been taken in the materialsindustry, with
many differentforging conditionsattemptedto achieve
agivenfinal product.Theobviousdrawbacksof thisap-
proacharelargetimeandfinancialcostsandthelackof
any reliablepredictivecapability. Anothermethodis to
develop a parameterised,physically-motivatedmodel,
andto solvefor theparametersusingempiricaldata[2].
However, the limitation with this approachis that in
termsof the physicaltheorythe microstructuralevolu-
tion dependsuponseveral “intermediate”microscopic
variableswhich have to be measuredin orderto apply
themodel.Someof thesevariables,suchasdislocation
density, are difficult and time-consumingto measure,

making it impracticableto apply suchan approachto
large-scaleindustrialprocesses.

Our approachto thepredictionof forgedmicrostruc-
tures is therefore to develop an empirical model in
which we definea parameterised,non-linearrelation-
ship betweenthe microstructuralvariablesof interest
and thoseeasily measuredprocessvariables. Sucha
modelcouldbe implemented,for example,asa neural
network with thehiddennodesessentiallyplayingarole
analogousto the“intermediate”microscopicvariables.

2. Materials Forging

When a material is deformed,potentialenergy is put
into the systemby virtue of work having beendoneto
move crystalplanesrelative to oneanother. Themate-
rial is thereforenot in equilibrium andhasa tendency
to lower its potentialenergy by atomicrearrangement,
through the competingprocessesof recovery, recrys-
tallisation and grain growth. Theseprocessesare en-
couragedby raisingthetemperatureof thematerial(an-
nealing). Forge deformationprocessescanbe divided
into two classes.In cold working the recrystallisation
rateis so low that recrystallisationessentiallydoesnot
occurduring forging. Recrystallisationis subsequently
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Fig. 1: Deformationgeometries. (a) (left) Plane-straindiametrical
compression. The workpieceis subsequentlysectionedinto many
nominally identicalspecimenswhich areannealedat differentcom-
binationsof temperatureandtime. The compressiongives rise to a
non-lineardistribution of strainsacrossthespecimen(seeFigure2b).
Theseallow usto obtainmany input trainingvectors,� , for ourmodel
usinga singlecompressiontest. (b) (right) Axisymmetricaxial com-
pression.

achievedstaticallyby annealing.In contrast,hot work-
ing refersto thehightemperatureforgingof materialsin
which recrystallisationoccursdynamicallyduringforg-
ing. This processis considerablymore complex than
coldworkingasnow thefinal microstructureof thema-
terial is generallya path-dependentfunctionof thehis-
tory of the processvariables. This is particularly true
of the Aluminium–Magnesiumalloy consideredhere,
which have a relatively long ‘memory’ of the process,
thusnecessitatingamodelwhichkeepstrackof thehis-
tory of thematerial.We shallconsidera modelfor this
dynamicprocessin Section4.

The ultimategoal of forge modelling is the inverse
problem: Given a set of desiredfinal propertiesfor a
component,what is the optimal material and forging
processwhich will realisetheseproperties?This is a
considerablyharderproblemsincetheremaybea one-
to-many mappingbetweenthe desiredpropertiesand
the necessaryforging process. This problemwill not
beaddressedin thispaper.

3. Static Modelling

Cold forgingcanin generalbemodelledwith theequa-
tion �������	��
 (1)

where� is amicrostructuralvariable,� is thesetof pro-
cessvariablesand � is somenon-linearfunction. In our
particularimplementationwe areinterestedin predict-
ing asinglemicrostructuralvariable,namelygrainsize,
in agivenmaterial(anAl-1%Mg alloy) asa functionof
thetotalstrain,� , annealingtemperature,
 , andanneal-
ing time, � . Theexperimentalset-upfor obtainingthese
datais asfollows. A workpieceof thematerialis com-
pressedin plane-straincompressionat room tempera-
ture,asshown in Figure1a.After thespecimenhasbeen
annealed,it is etchedandthegrainsizesmeasuredwith

Fig. 2: (a) The left half of this diagramshows the microstructureof
half of asectionedspecimenwhichhasbeendeformedunderaplane-
strain compression.The materialhasbeenannealedat ��������� for
30 mins producingmany recrystallisedgrains. (b) The right half of
this diagramis the correspondingstrain contourmap producedby
the Finite Elementmodel. Note that the areasof high strain in (b)
correspondto smallgrainsin (a).

an optical microscope.The local strainexperiencedat
eachpoint in thematerialis evaluatedusingaFiniteEl-
ement(FE) model,the parametersof this modelbeing
determinedby the known materialproperties,forging
geometries,friction factorsandsoon. Figure2b shows
an exampleof an FE map. Many grain sizeswithin
a singlesmall areaareaveragedto give a meangrain
size. Thus we now have a set of model inputs, � , 

and � , associatedwith a singlemeangrain sizewhich
canbeusedto developastaticmicrostructuralmodelof
forging. Furtherdetailsof the experimentalprocedure
canbefoundin Sabinetal. [9].

3.1. The Gaussian Process Model

The Gaussianprocessmodel[4] [10] assumesthat the
prior joint probabilitydistribution of a setof any � ob-
servationsis givenby an � -dimensionalGaussian,i.e.� �	������� ���"!$#&%'#)(*�+
 (2), -�.0/�1�2435 �	���627%8
:9;(=<?>� �	���@2A%8
CBD# (3)

where ��� = �E� > �E� > 
�#F�HGI�	��GJ
�#�KLK�KL#F�H���	���"
F
 is the set� of observationscorrespondingto the set of � in-
put vectors, �L� � !NMO�L� > #F� G #�K�KLK�#F� � ! . % and ( � ,
respectively themeanandcovariancematrix for thedis-
tribution, parameterisethis model. Theelementsof the
covariancematrix arespecifiedby thecovariancefunc-
tion, which is a function of the input vectors, � � � ! ,
and a set of hyperparameters. A typical form of the
covariancefunctionisPRQ�S �@T > -�.0/VU&2435"WYX�Z[

WYX >
�E\�] WY^Q 27\�] W_^S 
 G` GW

a=b TJG b Tdc�e Q�S K
(4)

Thisequationgivesthecovariancebetweenany two val-
ues � Q and � S with correspondingf -dimensionalinput
vectors� Q an � S respectively, andis capableof imple-
mentinga wide classof functions,� , thatcouldappear
in equation1. (TheGaussianprocessmodelhasascalar
‘output’, � ; to modelseveral microstructuralvariables
we would useseveral independentmodels.) The first
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termin equation4 expressesourbelief thatthefunction
we aremodellingis smoothlyvarying, where ` W is the
lengthscaleoverwhich thefunctionvariesin the gEhEi in-
putdimension.Thesecondtermallows thefunctionsto
have a constantoffsetandthethird is a noiseterm: this
particularform is a modelfor input independentGaus-
siannoise.Thehyperparameters,` W ( g = 3 K�KLK f ), T > , T G ,T c , specifythefunction,andaregenerallyinferredfrom
asetof trainingdatain a fashionanalogousto traininga
neuralnetwork. They arecalledhyperparametersrather
thanparameters becausethey explicitly parameterisea
probability distribution rather than the function itself.
This distinguishesthemfrom weightsin a neuralnet-
work, which are rather“arbitrary”, in that addingan-
otherhiddennodecould changethe weightsyet leave
theinput–outputmappingessentiallyunaltered.

Oncethe hyperparametersareknown, the probabil-
ity distribution of a new predictedvalue, �H�Rj > , corre-
spondingto anew ‘input’ variable,���kj > , is� �E� �Rj > � � � #��L� � !I#&� �Rj > #)( �kj > 
 (5), -�.0/mln2 �E�H�kj > 2po�H�kj > 
 G5Hq G rsut?vxw y # (6)

i.e. a one-dimensionalGaussian,where o�H�kj > andq rs t?vxw areevaluatedin termsof thecovariancefunction
and the training data. We would typically report our
predictionas o�H�kj >kz q rs t?vxw . Theseerrorsreflectboth
the noisein the data(third term in equation4) andthe
modeluncertaintyin interpolatingthetrainingdata.The
factthattheGaussianprocessmodelnaturallyproduces
confidenceintervals on its predictionsis important in
the materialsindustry wherematerialpropertiesmust
oftenbespecifiedwithin certaintolerances.

Our modelassumesthat the measurementnoiseand
the prior probability of the unknown function can be
describedby a Gaussiandistribution. In our application
it is moresensibleto assumethat it is the logarithmof
grain sizeswhich aredistributedasa Gaussian,rather
than the grain sizesthemselves. This is becauseun-
certaintiesin measuringgrainsizescalewith themean
grain size, and are thereforemore appropriatelyex-
pressedasafractionof themeangrainsizeratherthana
fixedabsolutegrainsize.Moreover, empiricalevidence
suggeststhatgrainsizedistributionsarewell described
by a log normaldistribution [7].

3.2. Model Predictions

A Gaussianprocessmodelwastrainedusingasetof 46
datapairsobtainedfrom theplane-straingeometry, with{ K {}|�~ � ~�{ K��d� , � 5I�}� C ~ 
 ~ � � �}� C, 1 mins

~ � ~
60minsastheinputs.Oncetrained,themodelwasused
to producepredictionsof grainsizesfor a rangeof the
input variables.Thesepredictions,shown in Figure3,
agreewell with metallurgicalexpectations.

Oneof theassumptionsimplicit in ourmodelof cold
forging is thatgiventhe local strainconditions,themi-
crostructureis independentof the materialshapeand

Fig. 3: Grain size predictionsobtainedwith the Gaussianprocess
model trainedon datafrom the plane-straincompressiongeometry.
In eachof thethreeplots,two of theinput variablesareheldconstant
and the other varied. When not being varied, the inputs wereheld
constantat: �@�@����� � C; �R�@��� mins; ���@� � � . The crossesin
thestrainplot aredatafrom thetrainingset.As theGaussianprocess
is an interpolationmodel,predictionsat any valuesof the inputsare
constrainedby theentiretrainingset.

forgegeometry. In otherwords,we assumethatpredic-
tionscanbeobtainedgivenonly the local accumulated
strain (and annealingconditions). This is an impor-
tant requirementasit meansthat a singlemodelcould
be appliedto a rangeof industrial forging geometries,
provided that the local strainscould be obtained(e.g.
with an FE model). We testedthe validity of this as-
sumptionby usingthe Gaussianprocessmodeltrained
on plane-straindata to predict grain sizesin a mate-
rial compressedusinga differentgeometry, namelyan
axial compression(Figure1b). As before,after com-
pressionthematerialwasannealed,sectionedandgrain
sizesmeasured.A new FE modelgavetheconcomitant
local strains. Theseprocessinputs were then usedto
obtainpredictionsof thegrainsizesusingthe previous
Gaussianprocessmodel. Figure 4 plots thesepredic-
tions againstthe measurements.We seeremarkable
agreement—wellwithin thepredictederrors—thusval-
idatingourmodellingapproach.A practicalapplication
of ourmodelis to producediagramssuchasthatshown
in Figure5, a mapof thegrainsizes.Sucha mapis im-
portantfor engineerswho needto know thegrainsizes
atdifferentpointsin thematerial,andcanthusassessits
resistanceto phenomenasuchascreepandfatigue.

It should be noted that this methodcontainsother
implicit assumptions.Thefinal materialmicrostructure
is very stronglydependentuponthe materialcomposi-
tion. It is well known that even small changesin the
fractionsof thealloying constituents(andby extension,
impurities)canhave a strongeffect on the thermome-
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Fig. 4: Gaussianprocessmodelpredictionscomparedwith measured
values. The Gaussianprocessmodelwas trainedon datafrom one
compressionalgeometry(plane-strain)andits performanceevaluated
usingdatafrom anothergeometry(axial-compression)whichwasnot
seenduring training. The ����� line is to guidethe eye. Note that
not even a perfectmodelwould producepredictionson this line due
to finite noisein thedata.

Fig. 5: The left half is an imageof the microstructurein the axially
compressedspecimen.Theright half is thecorrespondinggrainsize
predictionsfrom theGaussianprocessmodelshown asacontourmap.

chanicalprocessingof the material. Oneway forward
is to include further input variablescorrespondingto
composition[3]. A secondimplicit assumptionhasbeen
the constancy of the initial microstructure.Depending
uponthe materialandthe degreeof thermomechanical
processing,the final microstructuremay retain some
‘memory’ of its initial microstructure,thusnecessitat-
ing amodelwhichhas“initial conditions”asadditional
inputvariables.

4. A Recurrent Neural Network for
Dynamic Process Modelling

4.1. Model Description

For thehot working problem,we assumethat thereare
two setsof variableswhich are relevant in describing
the behaviour of the dynamicalsystem. The first, � ,
areexternalvariableswhich influencethebehaviour of
the system,suchasthe strain,strainrateandtempera-
ture. It is assumedthat all of thesecanbe measured.
The secondset of variables, � , are the statevariables
which describethe systemitself. Theseare split into

1.0

1.0� � � � � �� � � � �

� � � � � � � � �� � � � � � �  
¡ ¢ � � � � � £� � � � � � � ¢ ¤ � � � � � � � �
Fig. 6: A recurrentneuralnetwork architecture(‘dynet’) for mod-
elling dynamicalsystems.The outputs,� , from the network arethe
timederivativesof thestatevariablesof thedynamicalsystem.There-
currentinputs, ¥ , arethesestatevariables.Thevaluesof ¥ at thenext
time stepareevaluated(usingequation9) from the outputs(via the
recurrentconnections)andtheprevious valuesof ¥ . All connections
andthetwo biasnodesareshown.

two categories. The first are measured,suchas grain
size,andthe secondareunmeasured,suchasdisloca-
tion density. Notethattheunmeasuredvariablesarenot
intrinsicallyunmeasurable:this is simplyacategory for
all of thestatevariableswhichwebelieveto berelevant
but which, for whatever reason,we donot measure.

Both � and� arefunctionsof time. A generaldynam-
ical equationwhich describesthetemporalevolutionof
the statevariablesin responseto the externalvariables
is ¦ �§� � 
¦ � ��¨"�E�§� � 
�#F�©� � 
F
V# (7)

where ¨ is somenon-linearfunction. To a first-order
approximation,wecanwrite�§� � b e � 
©�@�§� � 
 b ¦ �§� � 
¦ � e � K (8)

This dynamicalsystemcanbemodelledwith therecur-
rentneuralnetworkarchitectureshown in Figure6. This
is a discretetime network in which the input dataare
providedasadiscretelist of valuesseparatedby known
time intervals. The input–outputmappingof this net-
work implementsequation7 directly: Ratherthanpro-
ducingthestatevariablesattheoutputof thenetwork,as
is often the casewith recurrentnetworks (e.g.[8]), we
producethe time derivativesof the statevariables,for
reasonsthatareexpoundedonbelow. Thehiddennodes
computea non-linearfunctionof both theexternaland
therecurrentinputswith a sigmoidfunction(e.g.tanh),
asconventionallyusedin feedforwardnetworks. A lin-
earhidden–outputfunction is usedto allow for an ar-
bitrary scaleof the outputs. The recurrentpart of the
dynamicalsystem,viz. equation8, is implementedwith
the recurrentloops shown in Figure 6, by settingthe
weightsof theserecurrentloopsto the sizeof the time
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step, e � , betweensuccessive epochs.Explicity, the ªxhEi
recurrentinput at timestep« is givenby�}¬0� « 
§���}¬­� « 2 3 
 b�® ¬x� « 2 3 
Fe � � « 
 (9)

where

® ¬ � « 2 3 
©� ¦ �§� « 2 3 
&¯ ¦ � and e � � « 
 is thetime
betweenepoch � « 2 3 
 andepoch � « 
 .

Theprincipalreasonfor developinga network which
predictsthetimederivativesof thestatevariablesis that
it canbe trainedon time-seriesdatain which thesepa-
rationsbetweentheepochs,e � � « 
 , neednotbeconstant:
at eachepoch« we simply settheweightsof therecur-
rentfeedbackloopsto e � � « 
 . Furthermore,thenetwork
canbetrainedonmultiple timeseriesin which thetime
scalesfor eachtime seriesmaybevery different. This
is important in forging applicationsas the forging of
largecomponentswould occurovera longertime scale
thanfor smallcomponents,whereasthemicroscopicbe-
haviour of the materialswould essentiallybe the same
(for a given material). In sucha casewe would want
to incorporatedata from both forgings into the same
model, but without having to obtain measurementsat
thesameratein bothcases.

While our network is similar to that of Jordan[5],
our architecturehastheimportantattributesthat: 1) the
outputsare time derivativesof the statevariables,and
2) in training the network the error derivativescanbe
propagatedvia therecurrentconnectionsto thearbitrar-
ily distantpast. Our training algorithmcanbe seenas
ageneralisationof themethoddescribedby Williams &
Zipser[11] extendedto multiple time series.Although
necessarilyonly the feedforwardweightsaretrainable,
theinput–hiddenweights,for example,arenonetheless
dependentuponthevaluesof thehiddennodesby virtue
of the recurrentconnections,and this dependency is
taken into account. Training proceedsby minimizing
anerrorfunction,typically thesumof squareserror, by
gradientdescentor aconjugategradientalgorithm.The
weightscanbe updatedafter eachepochof eachtime-
series(i.e.RealTimeRecurrentLearning[11]), afterall
epochsof all patterns,or at any intermediatepoint.

We use a Bayesianimplementationof the training
procedure[6]: multiple weight decayconstantsreg-
ularize the determinationof the weights,and a noise
term specifiesthe assumednoise levels in the targets
( � ). Someform of regularisationis probablyessential
on accountof the many intermediateoutputvaluesfor
which their areno targets.Thenoiseandweightdecay
hyperparametersarecurrentlysetby hand,but couldin
principlebeinferredfrom thedata.

To train thenetwork weneedat leastonetargetvalue
atat leastoneepoch.Notethatthetrainingalgorithmis
notrestrictedto usetargetsonly for the‘outputs’: errors
canbepropagatedfrom any node.Generallywe would
have valuesof the statevariables(recurrentinputs)for
thefinal epoch.However, in metallurgical applications
we may sometimesbe able to obtain additionalmea-
surementsatsomeintermediateepochs,thusimproving
the accuracy of the derived input–outputfunction. We

will of coursenot have any target valuesfor the ‘un-
measured’statevariables. Hencethesevariablesmay
not even correspondto any physicalvariables,instead
acting as ‘hidden’ variableswhich convey somestate
informationnot containedin the ‘measured’statevari-
ables. Nonethelesswe may be able to provide some
loosephysicalinterpretationfor unmeasuredvariables.

Oncetrained,thenetwork producesa completetime
sequencefor all statevariablesgivena sequenceof the
externalinputs,i.e. thedetailsof theforgingprocess.

4.2. Model Demonstration

We now demonstratethe performanceof the modelon
oneparticularsyntheticproblemin which therearetwo
externalinput variables,\ > � � 
 and \°GI� � 
 , andtwo state
variables,� > � � 
 and �HG}� � 
 , definedby¦ � >¦ � � \ > 2 5 � > b | � G 27\ > � > (10)¦ �HG¦ � � \ G 2 � � > b � G 2m\ G � G K (11)

To mimic realprocessesin whichtheexternalinputsare
often constrainedto be positive (e.g. temperature),the\ > and \ G sequencesweregeneratedfrom constrained
randomwalks: at eachepoch, \ > ( \ G ) changeswith a
probabilityof 0.1 (0.5) by a randomamountuniformly
distributedbetween2 { K � and

b { K � ( 2 3 and

b 3 ). The
modulusof \ is takento ensureapositivesequence.The
initial � valueswererandomlyselectedfrom a uniform
distributionbetween2 3 and

b 3 .
Equations10 and11 arenot analyticallysolvable,so

we usedthe first-orderTaylor expansionin equation8
to evaluatethe � > � � 
 and �HGI� � 
 sequences.A very small
valueof e � wasusedto yield anaccurateapproximation
to thetruecontinuoussequence.

Onehundredsynthetictime seriesweregeneratedin
this fashion,with differentsequencesfor \ > and \±G and
different initial valuesof � > and �HG . The sequences
weregeneratedfrom � = 0 to � = 8 inclusive. We chose
to samplethesesequencesat a constantepochsepara-
tion of e � = 0.1,giving a sequencelengthof 81 epochs.
This time extent andvalueof e � samplesthe dynami-
cal sequencewell: If all \ dependenceis removed in
equations10and11,weareleft with dampedsinusoidal
oscillationsin � > and � G , with oscillationperiod1 and² <�> dampingtimescale2. The \ termsmake theseries
somewhatmorecomplex, but theoveralloscillatorybe-
haviour is retained.

Thenetwork wastrainedon 50 of thetime series.In
doing so, the network was only given the initial and
final � valuesand the complete \ sequencesfor each
time series: it did not seethe intermediate� values.
Oncetrained,the network wasappliedto the other50
sequences,i.e. given the initial � valuesand the \ se-
quences,thenetwork producessequencesfor � . We see
from Figure7 that thenetwork makesexcellentpredic-
tionsof � > and �HG at thefinal epoch.
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Fig. 7: Network predictionsof the final valuesof the ¥ ³ and ¥�´ se-
quencesfor the 50 time seriesin the testdatasetplottedagainstthe
target values. The rms errorsare0.0067and0.0084for ¥ ³ and ¥�´
respectively.

It is now interestingto askwhetherthe network has
managedto correctly learn the entire � sequencesfor
the test data,or whetherit has learnedsomesimpler
input–outputfunctionwhich just givescorrect � values
atthefinal epoch.Figure8 showsthe \ inputsequences,
and the predicted� sequencesin comparisonwith the
truesequences:Theagreementis generallyvery good.
Someof thepredictedsequences(suchasthelowerone
shown) deviatefrom thetruesequenceat earlyepochs.
This is probablydueto the differencebetweenthe sta-
tionarydistributionsof thestatevariablesat � =8 andat
early epochs:The network is explicity trainedto give
predictionsfor the target valuesof � . Theselie in the
rangesshown in Figure 8, which is narrower than the
rangeof � valuesat � = 0. Therefore,we would not
expectthenetwork to give suchgoodpredictionsin the
non-overlappingpartof this latterrange.As thedynam-
ical systemis damped,the poorerpredictionstend to
occurearlieron. Nonetheless,we seethat thenetwork
haslearnedagoodapproximationof thetrueunderlying
dynamicalsequencefor therangeof � valuespresentin
thetargets.

The network hasbeenappliedto a numberof other
syntheticproblems(includingoneswith non-linear, e.g.� > �HG , terms),anda goodpredicitive capablility is ob-

Fig. 8: Externalinput andstatevariablesequencesfor two different
time seriesin the testdataset. In eachplot the solid lines from top
to bottomare ¥ ³ , ¥�´ , �x³ and �}´ . For ¥ ³ and ¥�´ the solid lines are
the nework predictionsandthe dashedlines the true sequences.For
clarity, the sequencesfor ¥�´ , �x³ and �}´ have beenoffset from their
truepositionsby -1, -3 and-6 respectively.

served. The network hasalsobeenable to learnfrom
training data sets in which e � varies within eachse-
quence,andthelengthsof thesequencesdiffer [1].

5. Summary

We have introducedtwo techniquesfor modellingma-
terialsforging,onein thestaticdomainrelevantto cold
forging,andanotherin thedynamicdomainrelevantto
hot forging. The Gaussianprocessmodel usedin the
former casehasbeendemonstratedto provide a good
predictive capability, even when using a small, noisy
dataset.Furthermore,thesufficiency of our input vari-
ables(for agivenmaterial)hasbeendemonstratedfrom
the successfulapplicationof the trainedGaussianpro-
cessmodelto adifferentforginggeometry.

For the hot forging problem we have introduceda
generalneuralnetwork architecturefor modelling dy-
namical processes. The power of this network was
demonstratedon a syntheticproblem. Furtherdetails
of this model, as well as its applicationto a rangeof
syntheticproblems,will be presentedin a forthcoming
paper[1]. Futurework with thismodelwill focuson its
applicationto realdatasetsobtainedfrom hot forging.
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