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ABSTRACT

The ability to model the thermomechanicalprocessingof materialsis an increasinglyimportant
requirementin many areasof engineering.This is particularly true in the aerospaceindustry where
high materialandprocesscostsdemandmodelsthat canreliably predictthe microstructuresof forged
materials.We analysetwo typesof forging,cold forging in which themicrostructuredevelopsstatically
uponannealing,andhot forgingfor which it developsdynamically, andpresenttwo differentmodelsfor
predictingtheresultantmaterialmicrostructure.For thecold forging problemwe employ theGaussian
processmodel.Thisprobabilisticmodelcanbeseenasa generalisationof feedforwardneuralnetworks
with equally powerful interpolationcapabilities. However, as it lacks weightsand hiddenlayers, it
avoidsadhoc decisionsregardinghow complex a ‘network’ needsto be. Resultsarepresentedwhich
demonstratetheexcellentgeneralisationcapabilitiesof thismodel.For thehot forgingproblemwehave
developedatypeof recurrentneuralnetworkarchitecturewhichmakespredictionsof thetimederivatives
of statevariables.This approachallows us to simultaneouslymodelmultiple time seriesoperatingon
differenttimescalesandsampledatnon-constantrates.Thisarchitectureis verygeneralandlikely to be
capableof modellingawide classof dynamicsystemsandprocesses.

1. Introduction

Theproblemin themodellingof materialsforging can
be broadlystatedas follows: Given a certainmaterial
which undergoesa specifiedforging process,what are
thefinal propertiesof this material?Typical final prop-
ertiesin whichweareinterestedarethemicrostructural
properties,suchas the meangrain sizeandshapeand
the extent of grain recrystallisation. Relevant forging
processcontrol variablesarethe strain,strainrateand
temperature,all of whichmaybefunctionsof time.

A trial-and-errorapproachto solving this problem
has often been taken in the materialsindustry, with
many differentforging conditionsattemptedto achieve
agivenfinalproduct.Theobviousdrawbacksof thisap-
proacharelargetimeandfinancialcostsandthelackof
any reliablepredictivecapability. Anothermethodis to
develop a parameterised,physically-motivatedmodel,
andto solvefor theparametersusingempiricaldata[1].
However, the limitation with this approachis that in
termsof thephysicaltheorythe microstructuralevolu-
tion dependsuponseveral “intermediate”microscopic
variableswhich have to be measuredin orderto apply
themodel.Someof thesevariables,suchasdislocation
density, are difficult and time-consumingto measure,
making it impracticableto apply suchan approachto
large-scaleindustrialprocesses.

Our approachto thepredictionof forgedmicrostruc-
tures is thereforeto develop an empirical model in
which we definea parameterised,non-linearrelation-
ship betweenthe microstructuralvariablesof interest
and thoseeasily measuredprocessvariables. Sucha
modelcouldbe implemented,for example,asa neural
networkwith thehiddennodesessentiallyplayingarole
analogousto the“intermediate”microscopicvariables.

2. Materials Forging

When a material is deformed,potentialenergy is put
into thesystemby virtue of work having beendoneto
move crystalplanesrelative to oneanother. Themate-
rial is thereforenot in equilibrium andhasa tendency
to lower its potentialenergy by atomicrearrangement,
through the competingprocessesof recovery, recrys-
tallisation and grain growth. Theseprocessesare en-
couragedby raisingthetemperatureof thematerial(an-
nealing). Forge deformationprocessescanbe divided
into two classes.In cold working the recrystallisation
rateis so low that recrystallisationessentiallydoesnot
occurduringforging. Recrystallisationis subsequently
achievedstaticallyby annealing.In contrast,hot work-
ing refersto thehightemperatureforgingof materialsin
which recrystallisationoccursdynamicallyduringforg-
ing. This processis considerablymorecomplex than



Fig.1: Deformationgeometries.(a)Plane-straindiametricalcompres-
sion. Theworkpieceis subsequentlysectionedinto many nominally
identicalspecimenswhich areannealedat differentcombinationsof
temperatureandtime. Thecompressiongivesriseto anon-lineardis-
tribution of strainsacrossthespecimen(seeFigure2b). Theseallow
us to obtain many input training vectors, � , for our model using a
singlecompressiontest.(b) Axisymmetricaxialcompression.

coldworkingasnow thefinal microstructureof thema-
terial is generallya path-dependentfunctionof thehis-
tory of the processvariables. This is particularly true
of the Aluminium–Magnesiumalloy consideredhere,
which have a relatively long ‘memory’ of the process,
thusnecessitatingamodelwhichkeepstrackof thehis-
tory of thematerial.We shallconsidera modelfor this
dynamicprocessin Section4.

The ultimategoal of forge modelling is the inverse
problem: Given a set of desiredfinal propertiesfor a
component,what is the optimal materialand forging
processwhich will realisetheseproperties?This is a
considerablyharderproblemsincetheremaybea one-
to-many mappingbetweenthe desiredpropertiesand
the necessaryforging process. This problemwill not
beaddressedin thispaper.

3. Static Modelling

Cold forgingcanin generalbemodelledwith theequa-
tion �������	��
 (1)

where� is amicrostructuralvariable,� is thesetof pro-
cessvariablesand � is somenon-linearfunction.In our
particularimplementationwe areinterestedin predict-
ing asinglemicrostructuralvariable,namelygrainsize,
in agivenmaterial(anAl-1%Mg alloy) asa functionof
thetotalstrain,� , annealingtemperature,
 , andanneal-
ing time, � . Theexperimentalset-upfor obtainingthese
datais asfollows. A workpieceof thematerialis com-
pressedin plane-straincompressionat room tempera-
ture,asshown in Figure1a.After thespecimenhasbeen
annealed,it is etchedandthegrainsizesmeasuredwith
an opticalmicroscope.The local strainexperiencedat
eachpoint in thematerialis evaluatedusingaFiniteEl-
ement(FE) model,the parametersof this modelbeing
determinedby the known materialproperties,forging
geometries,friction factorsandsoon. Figure2b shows

Fig. 2: (a) The left half of this diagramshows the microstructureof
half of asectionedspecimenwhichhasbeendeformedunderaplane-
strain compression.The materialhasbeenannealedat ��������� for
30 mins producingmany recrystallisedgrains. (b) The right half of
this diagramis the correspondingstrain contourmap producedby
the Finite Elementmodel. Note that the areasof high strain in (b)
correspondto smallgrainsin (a).

an exampleof an FE map. Many grain sizeswithin
a singlesmall areaareaveragedto give a meangrain
size. Thus we now have a set of model inputs, � , 

and � , associatedwith a singlemeangrain sizewhich
canbeusedto developastaticmicrostructuralmodelof
forging. Furtherdetailsof the experimentalprocedure
canbefoundin Sabinetal. [7].

3.1. The Gaussian Process Model

The Gaussianprocessmodel [3] [8] assumesthat the
prior joint probability distribution of a set of any �
observationsis given by an � -dimensionalGaussian,
i.e.� �	������� ���"!$#&%'#)(*�+
 (2), -�.0/�1�2435 �	���627%8
:9;(=<?>� �	���@2A%8
CBD# (3)

where ��� = �E� > �E� > 
�#F�HGI�	��GJ
�#�KLK�KL#F�H���	���"
F
 is the set� of observationscorrespondingto the set of � in-
put vectors, �L� � !NMO�L� > #F� G #�K�KLK�#F� � ! . % and ( � ,
respectively themeanandcovariancematrixfor thedis-
tribution,parameterisethis model.Theelementsof the
covariancematrix arespecifiedby thecovariancefunc-
tion, which is a function of the input vectors, � � � ! ,
and a set of hyperparameters. A typical form of the
covariancefunctionisPRQ�S �@T > -�.0/VU&2435"WYX�Z[

WYX >
�E\�] WY^Q 27\�] W_^S 
 G` GW
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(4)

Thisequationgivesthecovariancebetweenany two val-
ues � Q and � S with correspondingf -dimensionalinput
vectors� Q an � S respectively, andis capableof imple-
mentinga wide classof functions,� , thatcouldappear
in equation1. (TheGaussianprocessmodelhasascalar
‘output’, � ; to modelseveral microstructuralvariables
we would useseveral independentmodels.) The first
termin equation4 expressesourbelief thatthefunction
we aremodellingis smoothlyvarying, where ` W is the
lengthscaleoverwhichthefunctionvariesin the g	hEi in-
putdimension.Thesecondtermallowsthefunctionsto



have a constantoffsetandthethird is a noiseterm: this
particularform is a modelfor input independentGaus-
siannoise.Thehyperparameters,` W ( g = 3 K�KLK f ), T > , T G ,T c , specifythefunction,andaregenerallyinferredfrom
aj setof trainingdatain afashionanalogousto traininga
neuralnetwork. They arecalledhyperparametersrather
thanparameters becausethey explicitly parameterisea
probability distribution ratherthan the function itself.
This distinguishesthemfrom weightsin a neuralnet-
work, which are rather“arbitrary”, in that addingan-
otherhiddennodecould changethe weightsyet leave
theinput–outputmappingessentiallyunaltered.

Oncethe hyperparametersareknown, the probabil-
ity distribution of a new predictedvalue, �H�Rk > , corre-
spondingto anew ‘input’ variable,� �lk > , is� �E� �Rk > � � � #��L� � !I#&� �Rk > #)( �lk > 
 (5), -�.0/nmo2 �E�H�lk > 2qp�H�lk > 
 G5Hr G stvu?wyx z # (6)

i.e. a one-dimensionalGaussian,where p�H�lk > andr st u?wyx areevaluatedin termsof thecovariancefunction
and the training data. We would typically report our
predictionas p�H�lk >l{ r st u?wyx . Theseerrorsreflectboth
thenoisein thedata(third term in equation4) andthe
modeluncertaintyin interpolatingthetrainingdata.The
factthattheGaussianprocessmodelnaturallyproduces
confidenceintervals on its predictionsis importantin
the materialsindustry wherematerialpropertiesmust
oftenbespecifiedwithin certaintolerances.

Our modelassumesthat the measurementnoiseand
the prior probability of the unknown function can be
describedby a Gaussiandistribution. In ourapplication
it is moresensibleto assumethat it is the logarithmof
grain sizeswhich aredistributedasa Gaussian,rather
than the grain sizesthemselves. This is becauseun-
certaintiesin measuringgrainsizescalewith themean
grain size, and are thereforemore appropriatelyex-
pressedasafractionof themeangrainsizeratherthana
fixedabsolutegrainsize.Moreover, empiricalevidence
suggeststhatgrainsizedistributionsarewell described
by a log normaldistribution.

3.2. Model Predictions

A Gaussianprocessmodelwastrainedusingasetof 46
datapairsobtainedfrom theplane-straingeometry, with| K |~}�� � ��| K��d� , � 5I�~� C � 
 � � � �~� C, 1 mins

� � �
60minsastheinputs.Oncetrained,themodelwasused
to producepredictionsof grainsizesfor a rangeof the
input variables.Thesepredictions,shown in Figure3,
agreewell with metallurgicalexpectations.

Oneof theassumptionsimplicit in ourmodelof cold
forging is thatgiventhelocal strainconditions,themi-
crostructureis independentof the materialshapeand
forgegeometry. In otherwords,weassumethatpredic-
tionscanbeobtainedgivenonly the local accumulated
strain (and annealingconditions). This is an impor-
tant requirementasit meansthat a singlemodelcould

Fig. 3: Grain size predictionsobtainedwith the Gaussianprocess
model trainedon datafrom the plane-straincompressiongeometry.
In eachof thethreeplots,two of theinput variablesareheldconstant
and the othervaried. Whennot beingvaried, the inputswereheld
constantat: �@�@����� � C; �R�@��� mins; ���@� � � . The crossesin
thestrainplot aredatafrom thetrainingset.As theGaussianprocess
is an interpolationmodel,predictionsat any valuesof the inputsare
constrainedby theentiretrainingset.

be appliedto a rangeof industrial forging geometries,
provided that the local strainscould be obtained(e.g.
with an FE model). We testedthe validity of this as-
sumptionby usingtheGaussianprocessmodeltrained
on plane-straindata to predict grain sizesin a mate-
rial compressedusinga differentgeometry, namelyan
axial compression(Figure1b). As before,after com-
pressionthematerialwasannealed,sectionedandgrain
sizesmeasured.A new FEmodelgavetheconcomitant
local strains. Theseprocessinputs were then usedto
obtainpredictionsof thegrainsizesusingtheprevious
Gaussianprocessmodel. Figure4 plots thesepredic-
tions againstthe measurements.We seeremarkable
agreement—wellwithin thepredictederrors—thusval-
idatingourmodellingapproach.A practicalapplication
of ourmodelis to producediagramssuchasthatshown
in Figure5, a mapof thegrainsizes.Sucha mapis im-
portantfor engineerswho needto know thegrainsizes
atdifferentpointsin thematerial,andcanthusassessits
resistanceto phenomenasuchascreepandfatigue.

It shouldbe noted that this methodcontainsother
implicit assumptions.Thefinal materialmicrostructure
is very stronglydependentuponthematerialcomposi-
tion. It is well known that even small changesin the
fractionsof thealloying constituents(andby extension,
impurities)canhave a strongeffect on the thermome-
chanicalprocessingof the material. Oneway forward
is to include further input variablescorrespondingto
composition[2]. A secondimplicit assumptionhasbeen
the constancy of the initial microstructure.Depending



Fig. 4: Gaussianprocessmodelpredictionscomparedwith measured
values. The Gaussianprocessmodelwas trainedon datafrom one
compressionalgeometry(plane-strain)andits performanceevaluated
usingdatafrom anothergeometry(axial-compression)whichwasnot
seenduring training. The ����� line is to guidethe eye. Note that
not even a perfectmodelwould producepredictionson this line due
to finite noisein thedata.

Fig. 5: The left half is an imageof the microstructurein the axially
compressedspecimen.Theright half is thecorrespondinggrainsize
predictionsfrom theGaussianprocessmodelshown asacontourmap.

uponthematerialandthedegreeof thermomechanical
processing,the final microstructuremay retain some
‘memory’ of its initial microstructure,thusnecessitat-
ing amodelwhichhas“initial conditions”asadditional
inputvariables.

4. A Recurrent Neural Network for
Dynamic Process Modelling

For thehot working problem,we assumethat thereare
two setsof variableswhich are relevant in describing
the behaviour of the dynamicalsystem. The first, � ,
areexternalvariableswhich influencethebehaviour of
the system,suchasthe strain,strainrateandtempera-
ture. It is assumedthat all of thesecanbe measured.
The secondset of variables,� , are the statevariables
which describethe systemitself. Thesearesplit into
two categories. The first aremeasured,suchas grain
size,andthe secondareunmeasured,suchasdisloca-
tion density. Notethattheunmeasuredvariablesarenot
intrinsicallyunmeasurable:this is simplyacategoryfor
all of thestatevariableswhichwebelieveto berelevant

1.0

1.0� � � � � �� � � � �
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Fig. 6: A recurrentneuralnetwork architecture(‘dynet’) for mod-
elling dynamicalsystems.The outputs,� , from the network arethe
timederivativesof thestatevariablesof thedynamicalsystem.There-
currentinputs, ¦ , arethesestatevariables.Thevaluesof ¦ at thenext
time stepareevaluated(usingequation9) from the outputs(via the
recurrentconnections)andtheprevious valuesof ¦ . All connections
andthetwo biasnodesareshown.

but which, for whatever reason,wedonotmeasure.
Both � and� arefunctionsof time.A generaldynam-

ical equationwhich describesthetemporalevolutionof
thestatevariablesin responseto theexternalvariables
is § �¨� � 
§ � ��©"�E�¨� � 
�#F�ª� � 
F
V# (7)

where © is somenon-linearfunction. To a first-order
approximation,wecanwrite�¨� � b e � 
ª�@�¨� � 
 b § �¨� � 
§ � e � K (8)

Thisdynamicalsystemcanbemodelledwith therecur-
rentneuralnetworkarchitectureshown in Figure6. This
is a discretetime network in which the input dataare
providedasadiscretelist of valuesseparatedby known
time intervals. The input–outputmappingof this net-
work implementsequation7 directly: Ratherthanpro-
ducingthestatevariablesattheoutputof thenetwork,as
is often thecasewith recurrentnetworks (e.g.[6]), we
producethe time derivativesof the statevariables,for
reasonsthatareexpoundedonbelow. Thehiddennodes
computea non-linearfunctionof both theexternaland
therecurrentinputswith a sigmoidfunction(e.g.tanh),
asconventionallyusedin feedforwardnetworks. A lin-
earhidden–outputfunction is usedto allow for an ar-
bitrary scaleof the outputs. The recurrentpart of the
dynamicalsystem,viz. equation8, is implementedwith
the recurrentloops shown in Figure 6, by settingthe
weightsof theserecurrentloopsto thesizeof the time
step, e � , betweensuccessive epochs.Explicity, the «yhEi
recurrentinputat timestep¬ is givenby�~­®� ¬ 
¨�@�~­0� ¬ 2 3 
 b�¯ ­y� ¬ 2 3 
:e � � ¬ 
 (9)

wherē ­0� ¬ 2 3 
ª� § �°� ¬ 2 3 
v± § � and e � � ¬ 
 is thetime
betweenepoch� ¬ 2 3 
 andepoch� ¬ 
 .



Theprincipalreasonfor developinga network which
predictsthetimederivativesof thestatevariablesis that
it canbe trainedon time-seriesdatain which thesepa-
rationsbetweentheepochs,e � � ¬ 
 , neednotbeconstant:
atj eachepoch¬ we simply settheweightsof therecur-
rentfeedbackloopsto e � � ¬ 
 . Furthermore,thenetwork
canbetrainedonmultiple timeseriesin which thetime
scalesfor eachtime seriesmaybevery different. This
is important in forging applicationsas the forging of
largecomponentswould occurovera longertime scale
thanfor smallcomponents,whereasthemicroscopicbe-
haviour of the materialswould essentiallybe the same
(for a given material). In sucha casewe would want
to incorporatedata from both forgings into the same
model, but without having to obtain measurementsat
thesameratein bothcases.

While our network is similar to that of Jordan[4],
ourarchitecturehastheimportantattributesthat: 1) the
outputsaretime derivativesof the statevariables,and
2) in training the network the error derivativescanbe
propagatedvia therecurrentconnectionsto thearbitrar-
ily distantpast. Our training algorithmcanbe seenas
ageneralisationof themethoddescribedby Williams &
Zipser [9] extendedto multiple time series. Although
necessarilyonly the feedforwardweightsaretrainable,
theinput–hiddenweights,for example,arenonetheless
dependentuponthevaluesof thehiddennodesby virtue
of the recurrentconnections,and this dependency is
taken into account. Training proceedsby minimizing
anerrorfunction,typically thesumof squareserror, by
gradientdescentor aconjugategradientalgorithm.The
weightscanbeupdatedaftereachepochof eachtime-
series(i.e. RealTime RecurrentLearning[9]), afterall
epochsof all patterns,or atany intermediatepoint.

To train thenetwork weneedat leastonetargetvalue
at at leastoneepoch. Note that the training algorithm
is not restrictedto use targetsonly for the ‘outputs’:
errors can be propagatedfrom any node. Generally
we would have valuesof the statevariables(recurrent
inputs) for the final epoch. However, in metallurgical
applicationswe would typically be able to obtain ad-
ditional measurementsat intermediateepochs,thusim-
proving theaccuracy of thederived input–outputfunc-
tion. We will of coursenot have any target valuesfor
the‘unmeasured’statevariables.Hencethesevariables
will not evencorrespondto any physicalvariables,in-
steadactingas ‘hidden’ variableswhich convey some
stateinformationnot containedin the ‘measured’state
variables.Nonethelesswemaybeableto providesome
loosephysicalinterpretationfor unmeasuredvariables.
Oncetrained,thenetwork producesacompletetimese-
quenceof the statevariablesgiven a sequenceof the
externalinputs,i.e. theforgingprocess.

5. Future Work

Future work will focus on the applicationof the re-
currentneuralnetwork describedto thedynamicalhot-

forging problem. Given that the time-seriestraining
datawill typicallybemadeupof many epochsfor which
thereareno targetoutputs,regularizationis likely to be
necessary, andwe will thereforeexaminethe applica-
tion of theBayesianmethodsdevelopedby Mackay[5].
Furthermorewe will investigatethe feasibility of the
Hessianmatrix for evaluatingconfidenceintervals on
thenetwork predictions.
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