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Black holes in AREPO

BHs: collisionless sink particles
- BH seeding with FOF finder on the fly.

- BH growth: via mergers with other BHs (within HSML and if v<c ) or via

gas accretion (Bondi-like) limited to the Eddington rate (Springel et al. 2005,
Di Matteo et al. 2005).
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with o = 100 x volume averaged Bondi rate for hot and cold ISM.



 BH feedback in two modes (analogous with X-ray binaries):
1. Quasar feedback if BHAR > (0.01 — 0.05) x Eddington rate
- small fraction of bolometric luminosity couples THERMALLY to the
surrounding gas. ; ’ 2
589 Freed = €L, = €16, Mpnc
2. Radio feedback if BHAR < (0.01 — 0.05) x Eddington rate.
- THERMAL bubbles (determined by the BH properties)
- Bubble radius derived from solutions for radio cocoon expansion

(Sijacki et al. 2007) 0
Ebub = €mEC 5MBH

ADDITIONALLY:

3. Radiative feedback from AGNs:

- Heats surrounding halo gas, modifies its ionisation state and the net
cooling rate (Vogelsberger et al. 2013)

4. Momentum-driven outflows

- Inject L/c into BH's neighbours rather than E_ (Costa et al. 2014).



Black holes in ILLUSTRIS

BH MASS — BULGE MASS RELATION

Sijacki et al. (in prep.)
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Kormendy & Ho 2013: circles: ellipticals, stars: spirals with bulges, squared
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Greg Snyder & Paul Torrey (g, r and | bands)
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BLACK HOLE REFINEMENT IN AREPO

CURTIS & SIJACKI (IN PREP)
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WHY REFINE?

Better resolve the fluid
parameters

Estimate accretion rate
better

Robustly resolve the
velocity structure
around black holes

y [kpc]

Include angular
momentum effects in
the accretion rate

_ More realistic feedback
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Exploring different feedback models in AREPO

* Hernquist (static) potential with:

M = 10" Mg

funs = 0.17 JV
DARWIN: @ CAMBRIDGE
e Minimum cell size: ~ 7 pc T

» Gas at hydrostatic equilibrium
» Explore range of BH masses:
5% 10" Mg to 3 x 10° Mg
 Assume AGN is constantly emitting
at its Eddington limit. COMPLEXITY, @ LEIC §,T
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Dirac allocation, PI: Sijacki



ENERGY-DRIVEN

MOMENTUM-DRIVEN
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Shell of shocked gas expands outwards as envisaged in models of spherical
models of isolated haloes (Silk & Rees 1998, Fabian 1999, King 2003)




Energy-driven outflow
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Numerical and analytical wind solutions are in close agreement.
At late times, R-T instabilities develop and lead to disruption of the shell.
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Numerical and analytical solutions agree at high black hole masses.




Costa, Sijacki & Haehnelt, 2014
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Cause of disagreement at lower black hole masses is confining pressure of
halo gas in the subsonic regime.

There is however a critical mass below which outflow solutions are bound.

My = (552) (gooe—=r) 10" Mg

(.17 200 kms—1
cf. Fabian 1999, King 2003



ENERGY-DRIVEN
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Anisotropic outflow escapes along paths of least resistance.
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ENERGY-DRIVEN
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No significant momentum-driven outflow for M =M .




Conclusions

In isolated potentials, we verify that a momentum flux of L/c is
sufficient to lead to a relation:

Mo = (J_) (21_10 = 1)4103 Mo

0.17 IS

A momentum flux >> L/c is however required to revert inflows of
gas as predicted by cosmological simulations of BH growth.

Energy-driven outflows provide the required momentum input.

New implementation methods, such as super-Lagrangian
refinement are a promising tool to study BH growth and feedback
in the next generation of cosmological simulations.
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