The Eagle simulations

An attempt to reproduce the observed galaxy population (and more!) in a cosmological framework

Rob Crain Leiden Observatory

Large Magellanic Cloud Herschel / Spitzer composite

Tarantula Nebula

Large Magellanic Cloud Herschel / Spitzer composite

Typical resolution scale of gravity calculation Best resolution of hydro calculation

Tarantula Nébula

Calculating radiative losses in the ISM is beyond cosmo simulations.

Feedback efficiencies cannot be estimated from first principles.

Only recourse is to calibrate feedback against observables.

Which brings us on to convergence...

Clearly a prerequisite for predictive power. Convention: construct subgrid models to be insensitive to numerical resolution.

I'll call this strong convergence.

Strong convergence demands big sacrifices

Artificially manipulate the hydro scheme:

- Decouple outflows from hydro forces
- Disable cooling in outflows

Feedback must scale with converged quantities:

- Only real option DM e.g. halo mass or dispersion
- Moves us closer to semi-analytics

Clearly a prerequisite for predictive power. Convention: construct subgrid models to be insensitive to numerical resolution.

 \rightarrow I'll call this strong convergence.

Without predictive power, is this necessary?

Can instead seek convergence at higher resolution after recalibrating subgrid models.

I'll call this weak convergence.

Working philosophy:

- appeal to weak convergence
- adopt simple, natural feedback:
 - no decouping, no cooling shut-off
 - scale with local, baryonic properties
 - one mode SF, one mode AGN

 calibrate f/b efficiencies to reproduce observed properties

reject clearly unphysical models

The Eagle simulations Evolution and Assembly of GaLaxies and their Environments

Cosmo-hydro simulations of 25-100 Mpc periodic volumes.

Standard res of 10⁶M_{sun} gas particles and smoothing length of 0.7 pkpc.

Major overhaul of OWLS code, including updated SPH and subgrid modules.

Eagle at a glance...

- 11 species radiative cooling (always on)
- Star formation with Z-dependent density threshold, implemented as a pressure law
- Mass loss from AGB, Type Ia+II SNe (single loading)
- BH growth by accretion and mergers
- Stochastic thermal f/b from stars+AGN (no decoupling)
 One mode of stellar f/b, one mode of AGN f/b

 Calibrate stellar feedback to reproduce z~0 GSMF and AGN efficiency to reproduce BH scaling relations.

Stellar feedback varied with local ISM properties
 metallicity + density scaling works well

Images from 3-colour (u,g,r) filters + dust

Barred discs

Ellipticals

Irregulars

Summary

We cannot predict f/b efficiencies from first principles

- natural solution is to calibrate them
- relaxes convergence requirements
- enables simpler feedback implementation

Eagle simulations adopt this philosophy

- calibrate to z~0 GSMF and BH scaling relns
- match with same precision as SAMs
- convergence properties understood

Powerful resource for probing physical mechanisms

- many variation runs
- foundation for more detailed modelling