Galaxy formation simulations including local radiation fields

Rahul Kannan (MPIA) G. Stinson, A.V. Macciò J. F. Hennawi, S. Cantalupo

Quenching & Quiescence 17 July 2014

- Gas overcooling problem in simulations
- High Star formation efficiency
- Need to invoke various feedback mechanisms
 - SNe feedback invoked at the low mass end
 - AGN feedback invoked at the low mass end
 - Decreasing the cooling rate can also regulate star formation (see
 P. Hopkins and S. Cantalupo talk)

Is gas cooling calculated correctly?

- Only extragalactic UV background considered in calculations of gas cooling rate
- Local sources such as stellar winds from O & B stars and SNe shocks produce ionizing radiation
- Cantalupo 2010, argues that this effect is important in MW mass galaxies
- Important for low mass galaxies (S. Cantalupo's Talk)

Heat Equation

$$\frac{D\varepsilon}{Dt} = -\frac{P}{\rho}\vec{\nabla}.\vec{u} + \frac{H - \Lambda}{\rho} \tag{1}$$

where $\varepsilon=$ specific internal energy, H= Heating rate, $\Lambda=$ Cooling rate and

$$\frac{H-\Lambda}{\rho}=f(n_i,T,U) \tag{2}$$

where n_i = density of each species, U = incident radiation field but

$$n_i = f(n_{i,j}, T, U) \tag{3}$$

Effect of ionizing radiation

• The photoionization rate - Γ_{γ} depends on the incident radiation field

$$\Gamma_{\gamma,i} = \int_{v_T}^{\infty} \frac{4\pi J_v}{hv} \sigma_i \, dv \tag{4}$$

- σ_i is the photoionization cross section for species 'i'
- This cross section is highest at threshold frequency
- In addition to ionizing the gas, high energy photons can also heat the gas
- The photoheating rate ε_i is given by

$$\varepsilon_{i} = \int_{v_{T}}^{\infty} \frac{4\pi J_{v}}{hv} \sigma_{i}(hv - hv_{T}) dv \tag{5}$$

 High energy photons inject more energy into gas, but the cross section for interaction is less

- Cervino+2002 considered X-rays from shock heated SNe gas
- Corelates well with the SF in the galaxy
- Assumption 5% of mechanical energy of supernova converted into thermal
- Empirical SED derived, quantified by the SFR of the galaxy

- Distance = 1 kpc, $n_H = 0.01 cm^{-3}$, Z=Z_{\odot}
- High ionization state metal cooling suppressed along with total quenching of H, He cooling
- Becomes important at low redshifts, where the metallicity of incoming gas has been increased due to successive bursts of star formation

Contribution from old stars

- Bruzual & Charlot SSP models
- Accumulation of post-AGB stars contribute to ionizing flux
- The SED is almost constant after 200 Myrs
- Low level of hydrogen flux, but a harder spectrum extending up to 10 Rydbergs

Effect of radiation form old stars

- Distance = 10 kpc, $n_H = 0.01 cm^{-3}$, $Z=0.01Z_{\odot}$
- Helium cooling affected more than H cooling

Attempts at including local radiation sources in simulations

- All previous simulations have calculated gas cooling in the presence on UV background
- Local sources not accounted for
- Some exception: Radiative transfer (RT) embedded in galaxy formation code (Gnedin 2008, Petkova & Springel 2009)
 - Computationally expensive
 - Cannot simulate beyond z=4
- RT in post process (Fumagalli +2011, Rahmati+2013)
 - Can only probe the diagnostics like distribution of DLAs
 - Cannot asses the effect on the dynamics

Basic Assumptions

- Simplifying assumptions need to be made in order to include local sources and simulate the galaxies down to z=0
- The surrounding hot halo gas is optically thin which makes RT becomes an inverse square problem
 - The distance r is directly taken form the gravity tree calculation (computationally efficient)

 $F_{\nu}(r) = \frac{F_{\nu}(r_1)r_1^2}{r^2} \tag{6}$

- Absorption at source
 - 95 % of flux in Lyman Limit frequencies absorbed by birth cocoon of new stars
 - o Old stars are considered field stars and hence the escape fraction is unity

Test particle runs in GASOLINE

- $n_H = 0.001 cm^{-3}$
- Initial Temperature = 2×10^5 K
- Variaiton in cooling times only due to change in ionization state
- Less cooling as metallicity increases

- Halo mass $6.5 \times 10^{11} M_{\odot}$
- SNe Feedback + Early Stellar feedback Stinson+2013
- Gas particle mass 2×10^5 M $_{\odot}$, Softening 310 pc
- Metal cooling
 - Only UV background HM run
 - UV background + local photoionizing radiation sources HM+LPF run

Star Formation History

Phase Space Diagrams

15 / 29

- Cold phase of ISM suppressed
- · Gas accretion onto the disk is also suppressed

Figure: HM Figure: HM+LPF

Gas Accretion rate

- Gas accretion rate onto the disk of the central galaxy
 - $^{\circ}$ HM = $7.25M_{\odot}/yr$
 - \circ HM+LPF = 4.10M $_{\odot}/yr$

Temperature histogram

Simulation of high mass galaxy

- Halo mass $10^{13}~{\rm M}_{\odot}$
- SNe Feedback + Early Stellar feedback Stinson+2013
- Metal cooling
 - Only UV background HM run
 - UV background + local photoionizing radiation sources HM+LPF run

Temperature histogram

X-ray binaries (See also M. Gilfanov's Talk)

- Obervationally for both LMXB and HMXB
 - $\circ \frac{dL}{dE} = AE^{-2}$
- Observationally for HMXB's Mineo+14
 - $\circ~(\textit{L}_{x})\big|_{0.5}^{8} = 2.5 \times 10^{39}~\text{erg/s}$ for a SFR of 1 M_{\odot}/yr
- For LMXB's Gilfanov 2004
 - $\circ~(\textit{L}_{x})\big|_{0.5}^{8}=1\times10^{40}~erg/s~per~10^{11}M_{\odot}$

X-ray binaries

 $n_H=0.001cm^{-3}$, $Z=0.1Z_{\odot}$, Distance = 3 kpc Low mass x-ray binaries have larger effect - Additional source in the x-ray regime

X-ray binaries - LMXBs

 $n_H=0.001cm^{-3},~Z=0.1Z_{\odot}$ Low impact at large distances Need to know the soft x-ray emission form binaries

Hot Halo Emission

- Consider only free-free emission form hot gas
- $j_{v}^{ff} = 5.44 \times 10^{-39} Z^2 g_{ff} T^{-1/2} e^{-hv/k_B T} n_e n_i \ erg/s/cm^3/Hz/ster$
- Lower mass simulation $(6.5 \times 10^{11} M_{\odot})$ predicts correct L_{x} value
- Overcooling problem in high mass halos $(10^{13} M_{\odot})$ also linked with higher $L_{\rm x}$

Crain + 10

Effect of boosted cooling radiation

$$n_H = 0.001 cm^{-3}, Z = 0.1 Z_{\odot}$$

 Novel new method introduced to include the effects of local photoionizing radiation field in cosmological simulations (Kannan et al. 2014b)

- Novel new method introduced to include the effects of local photoionizing radiation field in cosmological simulations (Kannan et al. 2014b)
- MW mass galaxy simulation shows
 - o 67% reduction in SFR at late times
 - ~ 40% reduction in total stellar mass of galaxy
 - Slowly rising rotation curves

- Novel new method introduced to include the effects of local photoionizing radiation field in cosmological simulations (Kannan et al. 2014b)
- MW mass galaxy simulation shows
 - o 67% reduction in SFR at late times
 - ~ 40% reduction in total stellar mass of galaxy
 - Slowly rising rotation curves
- Two different effects of LPF as seen in phase diagram
 - Stops gas accretion onto the disk thereby reducing fuel for star formation - Preventive feedback
 - Stops gas in the disk from getting cold stabilising the disk through pressure support
- Preventive feedback mechanism

• Does not work for high mass galaxies

- · Does not work for high mass galaxies
- Additional radiation sources might have an impact on high mass galaxy formation
 - HMXB's slight increment in the hard X-ray regime
 - LMXB's Source of X-rays from old stellar populations promising but need to figure out the soft x-ray component
 - Cooling radiation from hot halo very low impact even with boosted radiation fields
 - Accreting White Dwarfs ? (see M. Gilfanov's talk)
 - AGN Low duty cycle (Vogelsberger+13), might need to account for non-equilibrium effects (Oppenheimer & Schaye 2013 a,b)