The relationship between quenching and structural and morphological evolution

rachel somerville Rutgers University

with thanks to: Ryan Brennan, Viraj Pandya, Ena Choi Guillermo Barro, Stijn Wuyts, Dale Kocevski, Arjen van der Wel & the CANDELS team

Quenching & Quiescence Heidelberg, July 14-18 2014

Quenching Questions and Conundra

- quiescence and galaxy morphology (internal density) are linked at all epochs since $z\sim3$ (E. Bell talk)
- fraction of galaxies (by number or mass) in 'quiescent' population has grown substantially since $z\sim3$ (Bell, etc.)
- quiescent galaxies are always more compact than SF galaxies (at a given stellar mass) at all epochs since z~3 (Bernardi, vdW talks)
- sizes of quiescent galaxies evolve much faster than SF-ers (vdW talk)
 - how are quenching, morphological transformation, and structural evolution connected? \rightarrow this talk!

quiescent

star-forming

star-forming

disk dominated Sersic index or B/T

bulge dominated

quiescent

star-forming

disk dominated

Sersic index or B/T

bulge dominated

quiescent

star-forming

disk dominated

Sersic index or B/T

bulge dominated

 $sSFR_{crit} = 1.75/age(z)$

preliminary data from CANDELS – Brennan, Pandya, rss et al. in prep

CANDELS

Brennan, Pandya, rss et al. in prep

smooth accretion forms rotationally supported disks, stars form

mergers (or DI?) transform disks into spheroids and rapidly feed supermassive blackholes --AGN-driven winds eject gas

BH growth self-regulated by AGN feedback on 'small scales'

> diffuse halo gas heated by radio jets (+?) ('maintenance mode')

'quiescent'

quenching?

cooling

offset by

heating

new disk can form

cooling

energy

continues

model for the co-evolution of galaxies, black holes, and AGN

- top-level halos start with a ~100-10⁴ M_{sun} seed BH
- mergers trigger bursts of star formation and accretion onto BH, and scatter disk stars into a spheroidal component. parameterized based on hydrodynamic merger simulations (Cox et al., Robertson et al.)
- following a merger, BH accrete at Eddington until they reach 'critical mass', then enter 'blowout' (power-law decline) phase (Hopkins et al. lightcurves)
- energy released by "bright mode" BH accretion drives a 'momentum driven' wind
- 'Bondi' accretion mode fed by hot halo gas; powers radio jets that offset cooling flow in "hot mode" halos (radiatively inefficient)

rss, Hopkins, Cox, Robertson & Hernquist 2008

Latest 'Santa Cruz' SAM: Porter, rss, et al. 2014 arXiv:1407.0594

-run in 'ROCKSTAR+consistent trees' from Bolshoi -model in which spheroids grow via mergers only did not produce enough intermediate mass early-type galaxies

-introduced two 'Disk Instability' recipes: stars only and stars+gas

-coupling of radio mode FB tuned to match high-mass end of SMF

symbols are observations from Bernardi et al. 2010; Cheng et al. 2011

SAMs produce about the right fraction of quiescent galaxies, or slightly too many (excess is probably mostly satellites; depends on how one defines `quiescent')

stellar mass >1.0E10 Msun

also qualitatively reproduce dependence of quiescent fraction on stellar or bulge mass up to z~3 – Lang et al. 2014

Brennan, Pandya, rss et al. in prep

not enough SF spheroids in the model w/o DI

Brennan, Pandya, rss et al. in prep

simple model for disk sizes

 $r_{d} \sim \lambda r_{H} f(C, \lambda, f_{d})$

- smoothly accreted gas ~ conserves its specific angular momentum
- disks form with exponential radial profiles
- density profile gets modified a bit by 'baryonic contraction'

Blumenthal et al. 1986 Dalcanton et al. 1997 Mo, Mao & White 1998 Somerville et GEMS 2008

New Model for spheroid sizes and velocity dispersions

 $C_{\rm int}E_{\rm int,remn} = C_{\rm int}E_{\rm int,prog} + C_{\rm rad}E_{\rm rad}$ gas fraction, mass ratio

Orbital parameters,

form factors calibrated from SPH simulations of binary idealized galaxy mergers (Cox et al.; Johansson et al. 2009) including mixed-morphology mergers

'dry' mergers produce remnants that are larger in radius than their progenitors

'wet' mergers produce remnants that are more compact than their progenitors

Porter, rss et al. 2014; see also Covington et al. 2008; 2011

solid lines: size of disk or spheroid component; dashed: size of composite galaxy

rss, Porter+CANDELS in prep;

observations from van der Wel et al. 2014

quenching and size evolution

- mergers are more gas-rich at high z
- low-mass galaxies have higher gas fractions at all z (set by SF efficiency/ feedback)
- the more gas, the more dissipation,
 the more compact the remnant
- massive galaxies become quenched at z~2 → transition from predominantly wet to predominantly dry (gas-poor) mergers above the critical (quenching) mass

gas fraction in mergers

P. Hopkins, rss et al. 2009

'Two-phase' galaxy assembly

Oser, Naab et al. 2010, 2012

growth of early types dominated by 'accreted mass' at late times [more so for more massive systems]

Oser et al. 2010

a relatively small number of dry minor or intermediate mergers (1:5-1:10) can significantly increase radius; accompanied by much smaller increase in mass and velocity dispersion; $R_{1/2} \sim M_{acc}/M_{ins}$

Naab et al. 2009; Hilz et al. 2012 see also Hopkins et al. 2009, 2010

Oser et al. 2010

Newman et al. 2012: study of pair fractions around quiescent galaxies in UDS+GOODS-S

concluded observed pair fractions consistent w/ minor mergers driving size growth at z<~1 but not at z>1

Cosmological hydrodynamical "zoom-in" simulations including AGN feedback (thermal, radiative, and mechanical)

> 20 halos (1.1E12< $M_h(z=0)$ <1.0E13) M_{sun} (8.9E10< $M_*(z=0)$ <1.0E12) M_{sun} star and gas particles 6E06 M_{sun} DM particles 3.6E07 M_{sun} comoving softening 571 pc

- size-mass scaling relations
- size evolution

• fraction of accreted/in situ all very sensitive to details of stellar and AGN feedback! (and also to numerics)

E. Choi et al. arXiv:1403.1257 +work in prep w/ Naab, J. Ostriker Oser, Hu, Moster, rss

Introducing the "Barro" plot

Barro et al. arXiv/1311.5559; see also Barro et al. 2013

CANDELS observations

4.0

3.6

3.2<u></u>

Sersic index [

1.2

CANDELS observations

model

quiescent

star-forming

40% of galaxies become compact due to mergers 60% become compact due to disk instabilities (Porter et al. 2014) "Violent Disk Instabilities" seen in hydrodynamical simulations (Ceverino et al. 2011)

Barro et al. arXiv/1311.5559

Conclusions

- deep multi-wavelength surveys like CANDELS now allow us to simultaneously study the evolution of quenching, morphology and structure since 'cosmic high noon' – promising way to constrain physical mechanisms
- galaxies cannot just 'fade out' morphological and structural transformation must accompany quenching
- our work suggests most galaxies first become compact and spheroid dominated in a `wet' (dissipational) process *then* quench
- size evolution of early types caused by combination of 1) late→early type transformation 2) transition from wet→ dry mergers 3) transition from in situ → accretion