The final stages of lowand intermediate-mass stars

Sahai and J. Trauger (JPL), the WFPC2 Science Team and NASA

Paola Marigo Department of Physics and Astronomy *G. Galilei* University of Padova, Italy

Università degli Studi di Padova

Origin of the hot gas and silicate emission in ETGs: AGB stellar winds and PN ejection?

2D hydrodynamical simulations of the interaction between the ambient ISM and the AGB wind + PN ejection

Parriott & Bregman, 2008, ApJ, 681, 1215 Bregman & Parriott 2009, ApJ, 699, 923

Input stellar parameters:

- AGB mass loss rates
- duration of the super-wind phase
- PN masses
- expansion velocities

Debate on ionizing sources:

- Low accretion-rate AGNs
- Old post-asymptotic giant branch stars (Stasińska et al. 2008, MNRAS, 391, L29)

lonizing photon rates of simple stellar populations

Post-AGB stars:

- harder ionization field than massive OB stars
- Drop of ~ 5 orders of magnitude in q_H at ages ~ 10⁸ yr, then flat evolution.

Agreement between different SSPs models only qualitative. Variations in q_H by up to 1 dex for ages > 10^8 yr.

Differences in ionizing flux for ages \geq 10⁸ yr should be attributed to:

- Different treatments of the TP-AGB phase (initial-final mass relation)
- Different treatments of the post-AGB phase (evolutionary time-scales)
- ✤ Metallicity
- ✤ IMF

Quenching and Quiescence — MPIA Heidelberg — July 17, 2014

Basic Stellar Evolution of C-O WD Progenitors

Hot Advanced Evolution of Low- and Intermediate-Mass Stars

UV evolutionary paths for low-mass and intermediate-mass single stars

All others: Bressan, Marigo, Girardi et al. 2012

Post-AGB (P-AGB) stars:

• the end result of the AGB phase

• expected in a wide range of stellar populations Initial masses 0.8 -8 M_{\odot} MS lifetimes: 10⁸- 10¹⁰ yr

PE-AGB and **AGB-manqué** stars:

• the result of insufficient envelope masses to allow a full AGB phase.

• are expected to be particularly prominent at high helium or α abundances when the mass loss on the RGB is high. Initial masses < 2 M_{\odot} MS lifetimes $\gtrsim 0.6 \ 10^9 \text{ yr}$

lonisation rates during the Post-AGB evolution of the central star

MAIN PARAMETERS:

 $\succ Luminosity \propto CS mass \Rightarrow AGB evolution$

⇒post-AGB evolution

- Effective temperature
 - Evolutionary speed

Post-AGB evolution: I. the central star mass

62 white dwarfs, most in open clusters Extension to the low-mass end: CPMPs Catalan et al. 2008 old open clusters Kalirai et al. 2008 change of slope at $M_i \approx 4 M_{\odot}$ $M_{\rm WD}$ and $t_{\rm cooling}$: spectral fitting (Teff and g) + grid of WD models and theoretical M-R relation

 M_i : $\tau(M_i) = \tau(\text{cluster}) - t_{\text{cooling}}(\text{WD})$ Uncertainties due to stellar evolution Age and metallicity of clusters overshooting Thickness of the WD H/He layers Composition of the WD core (He, C-O, O-Ne)

The core mass growth on the TP-AGB depends on (1) the efficiency of stellar winds (uncertain)

The core mass growth on the TP-AGB depends on (2) the efficiency of the third dredge-up (uncertain)

Calibration of the AGB phase needed! Ongoing ERC project:

The ACS Nearby Galaxy Survey Treasury

AGB LFs \Rightarrow lifetimes

Rosenfield et al. 2014, 2014arXiv1406.0676R

Post-AGB evolution: II. evolutionary speed

Depends on erosion rate of the envelope = At the top: stellar wind (uncertain) + At the bottom: displacement of the H-shell

- *t*_{tr} : transition time from AGBtip to onset of H-ionization (few 10² few 10⁴ yr)
 Onset of the radiation-driven fast wind *
- *t*_{cr} : **Crossing time** from ionization to hottest point

Post-AGB evolution: III. H vs He burners

He-burners (15-25%)

- ✓ more prone to experience a LTP
- ✓ Slower evolution
- ✓ Less luminous

Luminosity and evolutionary speed affected by **TPC phase** ϕ at which the star leaves the AGB: **Larger** $\phi \Rightarrow$ H-burners (L ~ L_H) **Lower** ϕ (< 0.25) \Rightarrow He-burners (L ~ L_{He})

Ionizing rates of SSPs: M_i-M_f relations

Stellar Mass-Loss rates from detailed AGB evolutionary models

Mass injection rates in ETGs: stellar winds and SNIa

 $\dot{M}_*(12 \text{ Gyr}) = 3.6 \ 10^{-12} \ L_B(L_{B,\odot}) \ M_{\odot} \ \text{yr}^{-1}$ (ongoing calibration) $\dot{M}_*(12 \ \text{Gyr}) = 4.1 \ 10^{-11} \ L_B(L_{B,\odot}) \ M_{\odot} \ \text{yr}^{-1}$ $\dot{M}_{SNIa}(12 \ \text{Gyr}) = 2.2 \ 10^{-13} \ L_B(L_{B,\odot}) \ M_{\odot} \ \text{yr}^{-1}$

FINAL REMARKS

- Details of AGB and Post-AGB evolution critical to investigate the feedback of these stars on galaxy properties.
- \succ Many uncertainties \Rightarrow AGB calibration needed , new post-AGB models needed
- Post-AGB ionizing rates: Mi-Mf relation, H/He burners, crossing times
- AGB mass injection: theoretical predictions with detailed AGB evolution models covering wide ranges of ages and metallicities are now feasible.

This research is supported under ERC Consolidator Grant funding scheme (project STARKEY)

UV evolutionary paths in UVIS and Galex filters

Rosenfield et al. 2012, ApJ, 755, 131 Schiavon et al., 2012, ApJ, 143, 121

Helium-enhanced HB models: stronger far-UV flux compared to the normal helium models

HR diagrams and SEDs of a simple stellar population [Fe/H] = -0.9age=11 Gyr

Helium-rich stars evolve faster \Rightarrow they have lower masses at given age.

<Teff> of HB stars with Y = 0.33 is \sim 11,500 K higher than for Y = 0.23

Chul et al. 2011, ApJ., 740, L45