The final stages of low- and intermediate-mass stars

Paola Marigo
Department of Physics and Astronomy G. Galilei
University of Padova, Italy
Origin of the hot gas and silicate emission in ETGs: AGB stellar winds and PN ejection?

2D hydrodynamical simulations of the interaction between the ambient ISM and the AGB wind + PN ejection

Spitzer spectra of early-type galaxies in Virgo

Silicate emission at 10\(\mu\)m due to O-rich mass-losing dusty AGB stars?

Input stellar parameters:
- AGB mass loss rates
- duration of the super-wind phase
- PN masses
- expansion velocities
Origin of LINERS: ionizing photons from Post-AGB stars?

Debate on ionizing sources:
- Low accretion-rate AGNs
Ionizing photon rates of simple stellar populations

Post-AGB stars:
- harder ionization field than massive OB stars
- Drop of ~ 5 orders of magnitude in q_H at ages $\sim 10^8$ yr, then flat evolution.

Agreement between different SSPs models only qualitative.
Variations in q_H by up to 1 dex for ages $> 10^8$ yr.
Differences in ionizing flux for ages $\geq 10^8$ yr should be attributed to:

- Different treatments of the TP-AGB phase (initial-final mass relation)
- Different treatments of the post-AGB phase (evolutionary time-scales)
- Metallicity
- IMF
Basic Stellar Evolution of C-O WD Progenitors

- From ~0.9 to 8 M\textsubscript{\odot}
 - Thermally Pulsing AGB
 - Unique nucleosynthesis
 - 3d dredge-up
 - 2d dredge-up
 - Strong mass loss

AGB star structure

- ZAMS
- H \rightarrow He
- He \rightarrow C_{1,0}
- To PN and WD...

Deep convective envelope

- Thin radiative zone
- H burning shell
- Helium-rich intershell
- Helium burning shell
- CO core

Adapted from Lattanzio
AGB and Post-AGB evolution

Hot Advanced Evolution of Low- and Intermediate-Mass Stars

- Post-AGB: H-burners
- Post-AGB: He-burners
- Post-early AGB
- Hot HB and AGB-manquè stars
UV evolutionary paths for low-mass and intermediate-mass single stars

Post-AGB (P-AGB) stars:
- the end result of the AGB phase
- expected in a wide range of stellar populations
Initial masses 0.8 - 8 M_\odot
MS lifetimes: 10^8 - 10^{10} yr

PE-AGB and AGB-manqué stars:
- the result of insufficient envelope masses to allow a full AGB phase.
- are expected to be particularly prominent at high helium or α abundances when the mass loss on the RGB is high.
Initial masses < 2 M_\odot
MS lifetimes $\gtrsim 0.6 \times 10^9$ yr

Graphical Representation:*
- $P - AGB$: 10^3-10^4 yr
- $PE - AGB$: 10^5-10^6 yr
- $AGB - Manquè$: 10^6-10^7 yr
- $ZAHB$:

PAGB: Vassiliadis & Wood ’94
All others: Bressan, Marigo, Girardi et al. 2012
Ionisation rates during the Post-AGB evolution of the central star

More massive CS:
- hotter and brighter
- faster evolution

MAIN PARAMETERS:
- Luminosity \propto CS mass \Rightarrow AGB evolution
- Effective temperature \Rightarrow post-AGB evolution

Marigo et al. 2001
Post-AGB evolution: I. the central star mass

62 white dwarfs, most in open clusters
Extension to the low-mass end:
CPMPs Catalan et al. 2008
old open clusters Kalirai et al. 2008
change of slope at \(M_i \approx 4 M_\odot \)

\(M_{WD} \) and \(t_{cooling} \): spectral fitting
(Teff and g) +
grid of WD models and theoretical M-R relation

\(M_i \): \(\tau(M_i) = \tau(\text{cluster}) - t_{cooling}(WD) \)

Uncertainties due to stellar evolution
Age and metallicity of clusters
overshooting
Thickness of the WD H/He layers
Composition of the WD core
(He, C-O, O-Ne)
The core mass growth on the TP-AGB depends on (1) the efficiency of stellar winds (uncertain). The longer the AGB lifetime, the larger the final mass.

Pulsation-assisted dust-driven wind

Superwind \Rightarrow PN ejection

exp

Ramstedt et al. 2009
The core mass growth on the TP-AGB depends on (2) the efficiency of the third dredge-up (uncertain).

The efficiency

$$\lambda = \frac{\Delta m_{\text{du}}}{\Delta m_{\text{H}}}$$

is poorly known.
Calibration of the AGB phase needed!

Ongoing ERC project:

The ACS Nearby Galaxy Survey Treasury

- 62 dwarf galaxies
 - $d < 4$ Mpc
 - All metallicities down to very low

AGB LFs \Rightarrow lifetimes

- Initial-final mass relation of intermediate-age WD progenitors \Rightarrow core mass growth

Post-AGB evolution: II. evolutionary speed

- \(t_{tr} \): transition time from AGBtip to onset of H-ionization (few \(10^2\) – few \(10^4\) yr)
- Onset of the radiation-driven fast wind
- \(t_{cr} \): Crossing time from ionization to hottest point

Depends on erosion rate of the envelope =
At the top: stellar wind (uncertain) +
At the bottom: displacement of the H-shell
Post-AGB evolution: III. H vs He burners

Luminosity and evolutionary speed affected by TPC phase ϕ at which the star leaves the AGB:

- Larger $\phi \Rightarrow$ H-burners ($L \sim L_H$)
- Lower $\phi (< 0.25) \Rightarrow$ He-burners ($L \sim L_{He}$)

He-burners (15-25%)
- More prone to experience a LTP
- Slower evolution
- Less luminous
He-burners have longer timescales than H-burners.

An example: a post-AGB star with $M \sim 0.6 \, M_\odot$

The He burner emits more ionizing photons than the H-burner does (factor of a few).
Ionizing rates of SSPs: M_i-M_f relations

- **Mi-Mf relation:** Weidemann 2000
- **Mi-Mf relation:** Williams 2007
- **Mi-Mf relation:** Kalirai et al. 2008
Stellar Mass-Loss rates from detailed AGB evolutionary models

Sample output of a TP-AGB model (Mi=5 M⊙, Zi=0.008) computed up to the ejection of the envelope

Specific rate of mass loss from SSPs

Mass injection rates in ETGs: stellar winds and SNIa

\[\dot{M}_* (12 \text{ Gyr}) = 3.6 \times 10^{-12} \, L_B \left(\frac{L_B}{L_B,\odot} \right) \, M_\odot \, \text{yr}^{-1} \quad \text{(ongoing calibration)} \]

\[\dot{M}_* (12 \text{ Gyr}) = 4.1 \times 10^{-11} \, L_B \left(\frac{L_B}{L_B,\odot} \right) \, M_\odot \, \text{yr}^{-1} \]

\[\dot{M}_{\text{SNIa}} (12 \text{ Gyr}) = 2.2 \times 10^{-13} \, L_B \left(\frac{L_B}{L_B,\odot} \right) \, M_\odot \, \text{yr}^{-1} \]
FINAL REMARKS

- Details of AGB and Post-AGB evolution critical to investigate the feedback of these stars on galaxy properties.

- Many uncertainties ⇒ AGB calibration needed, new post-AGB models needed

- Post-AGB ionizing rates: Mi-Mf relation, H/He burners, crossing times

- AGB mass injection: theoretical predictions with detailed AGB evolution models covering wide ranges of ages and metallicities are now feasible.

This research is supported under ERC Consolidator Grant funding scheme (project STARKEY)
UV evolutionary paths in UVIS and Galex filters

Evolutionary tracks

HST/WFC3-UVIS

Galex

PHAT data of M31

Globular Clusters

Helium-enhanced HB models: stronger far-UV flux compared to the normal helium models

HR diagrams and SEDs of a simple stellar population
[Fe/H] = −0.9
age=11 Gyr

Helium-rich stars evolve faster ⇒ they have lower masses at given age.

<Teff> of HB stars with Y = 0.33 is
~ 11,500 K higher than for Y = 0.23

Y=0.23
normal helium

Y=0.33
enhanced helium