

(radio-mode) AGN feedback in semianalytics

Nikos Fanidakis

Quenching & Quiescence

With: Andrea Macciò (MPIA),

Alvaro Orsi (PUC), Salvo Cielo (MPIA), George Mountrichas (NOA), Antonis Georgakakis (MPE), Carlton Baugh (Durham), Mirko Krumpe (ESO), Cedric Lacey (Durham), Carlos Frenk (Durham)

Motivation for introducing AGN feedback

"Radio mode" AGN feedback

Standard AGN feedback scheme in semi-analytics

MUNICH model (Croton et al. 2006):

$$\dot{M}_{\rm BH} \propto M_{\rm BH} f_{\rm hot} V_{\rm vir}^3 \Longrightarrow L_{\rm jet} = 0.1 \dot{M}_{\rm BH} c^2$$
$$\dot{m}_{\rm cool}' = \dot{m}_{\rm cool} - \frac{L_{\rm jet}}{0.5 V_{\rm vir}^2}$$

See also Rachel Somerville's (2008) model and MORGANA model (Monaco et al. 2007)

GALFORM model (Bower et al 2006):

$$L_{\rm jet} = f_{\rm jet} L_{\rm Edd}, \ f_{\rm jet} \sim 0.04$$

Cooling in massive haloes is suppressed if:

$$L_{\text{jet}} \ge L_{\text{cool}} \Longrightarrow \dot{M}_{\text{BH}} = \frac{L_{\text{cool}}}{\varepsilon_r c^2}$$

Typical accretion rates are below 1-10% of the Eddington accretion rate.

Effect on gas cooling

With AGN feedback we reproduce

See also: Monaco et al. (2007), Lagos et al. (2008), Somerville et al. (2008)

With AGN feedback we reproduce

See also: Monaco et al. (2007), Lagos et al. (2008), Somerville et al. (2008)

Linking feedback to AGN: BH growth in GALFORM

NF et al. (2011, 2012) See also: Malbon et al. (2007), Marulli et al (2008), Somerville et al (2008), Hirschmann et al (2012)

Linking feedback to AGN: Modelling the accretion flow

Linking feedback to AGN: Luminosity functions

Effects of feedback on AGN: The AGN colour bimodality

Effects of feedback on AGN: The AGN colour bimodality

Hot-halo accretion is essential for reproducing the halo mass of moderate luminosity AGN!

NF+(2013a)

See also: Ross et al. (2009), White et al. (2012), Shen et al. (2013)

Effects of feedback on AGN: The Radio Galaxy Luminosity Function

Effects of feedback on AGN: The clustering of Radio Galaxies

With a phenomenological calculation for the accretion rate that is linked to AGN feedback we get:

- 1. The correct evolution of AGN
- 2. The colour bimodality of AGN
- 3. The clustering of moderate luminosity AGN and luminous Quasars
- 4. The abundance & clustering of Radio Galaxies

Take away message: AGN feedback & associated growth mode crucial for reproducing key AGN properties