Clues on Elliptical galaxy formation from SDSS galaxy profiles

M. Bernardi, A. Meert et al. UPenn

12

б

-12 - 6 - 0

Better photometry of the SDSS brightest galaxies

 Dependence on fitting model

Dependence on sky

Bernardi et al. 2013

Dependence on sky

Meert, Vikram & MB 2014

Sky subtraction problems also affect n_{Ser}

Bernardi et al 2014a

Welcome to the UPenn SDSS PhotDec Catalog!

Meert, Vikram & Bernardi (arXiv:1406.4179)

!!THIS IS A PAID COMMERCIAL ANNOUNCEMENT!!

The UPenn SDSS PhotDec Catalog provides 2-d galaxy profile fits in several visible bands using SDSS data. Additional data collected from other sources is provided to facilitate analysis. The catalog is constructed and maintained by Mariangela Bernardi, Alan Meert and Vinu Vikram. To learn more about the catalog visit the other sections.

Explore the Catalog

About the Catalog

PLOTS !!! Radius vs. Magnitude | Sersic vs. Radius | Sersic vs. Magnitude

View the Galaxies

Classify the Galaxies Download the Catalog Data

http://shalaowai.physics.upenn.edu/~ameert/fit_catalog/

 $\begin{array}{l} z = 0.16 \\ P_{zoo}(\text{EII}) = 0.82 \\ P_{zoo}(\text{Spiral}) = 0.04 \\ P(\text{EII}) = 0.81 \\ P(\text{S0}) = 0.09 \\ P(\text{Sob}) = 0.09 \\ P(\text{Sob}) = 0.06 \\ P(\text{Scd}) = 0.04 \\ M_{Petro} = -22.941 \\ m_{Petro} = 16.676 \\ r_{Petro} = 2.79 \end{array}$

Measurements in close agreement with other photometry of nearby clusters

Luminosity Function

Bernardi et al. 2013

M* Function

Bernardi et al. 2013

Bernardi et et al. (2013)

Kravtsov et al. (2014)

- impacts HOD/SHAM M*-M_{halo} relations
- reduces required feedback at high M

The assembling of massive galaxies and the growth of sizes At fixed stellar mass, high-z sizes are smaller by $(1+z)^{-1}$ or more (e.g. Trujillo et al. 2007; Cimatti et al. 2008; van Dokkum et al. 2008; Saglia et al. 2011; Bruce et al. 2012; Fan et al. 2013

Cimatti et al. 2008

Two scales are important: 3x10¹⁰ and 2x10¹¹M_{Sun}

Bernardi et al. 2011b

The two mass scales are important also for the bulge and disk M*-R relation

Bernardi et al. 2014a

Capellari et al. (2013)

Minor vs Major dry mergers

Minor vs Major dry mergers

Hilz et al. (2013)

Hilz et al. (2012)

The two mass scales: 3x10¹⁰ & 2x10¹¹ M_{sun}

Bernardi et al. 2014b

Analysing n_{Ser}

At fixed M* larger n_{Ser} have smaller σ

But we should look at B/T

The high mass scale: 2x10¹¹ M_{sun}

Bernardi et al. 2014b

A break for a disk component and increased evidence of minor dry mergers

At fixed M_{*} larger n_{Ser} have higher SSFR

How did the compact high-z galaxies evolve?

van der Wel et al. 2014

Bernardi et al. 2014b

In addition larger n_{Ser} have higher SSFR

Dependence on Halo Mass (using the Yang et al. catalog)

Bernardi et al. 2014b

- Not completely trivial
- Yang et al. have no scatter in L_{tot} vs M_{halo} and very low scatter in L_{cen} vs M_{halo} especially at low M_{halo}
- Simply using our new L_{tot} gives spurious results, so
 - We rank order in our new $\rm L_{tot}$ and assign $\rm M_{halo}$ accordingly; this will alter $\rm V_{halo}-M_{halo}$ relation
- We also account for fact that new Ls sometime mean another object in group is brightest; we define 'central' to be brightest

Analysing n_{Ser} - M_{*} - M_{halo}

ONLY CHANGE L

CHANGE LAND RE-SORT L_{tot}

Analysing n_{Ser} - M_{*} - M_{halo}

At fixed M_{*} centrals in larger M_{halo} have smaller n_{Ser}

Central vs Satellites

Small difference in SSFR

Bernardi et al. 2014b

Conclusions from our fitting profiles:

- Sky-subtraction + Sersic/SerExp fits suggest more objects at M_{*}>2e11 than previous work:
 - impacts HOD/SHAM M*-Mhalo relations
 - reduces required feedback at high M
 - alleviates tension between ρ_{\ast} and SFR(z)
- Two mass scales are important: 3e10 and 2e11: M*>2e11 special even more pronounced in n-M*
 - Difference between total and bulge dramatic at M_{*}<2e11 (suggestive of fast/slow rotator dichotomy)

• Sersic n>6 at M_{*}>2e11 suggestive of minor dry mergers

- n- σ at fixed M_{*} particularly useful
- At fixed M* smaller σ have larger n; larger SSFR have larger n; smaller M_{halo} have larger n
- Evolution of compact high-z galaxies = > high n_{Ser} galaxies at z~0?
 Evidence of minor mergers?