Quenching and Quiescence Heidelberg, Germany July 14-18, 2014

Joop Schaye (Leiden) (Yope Shea) Before we even got started, we were shown that the process of shocking...

... can lead to quenching ...

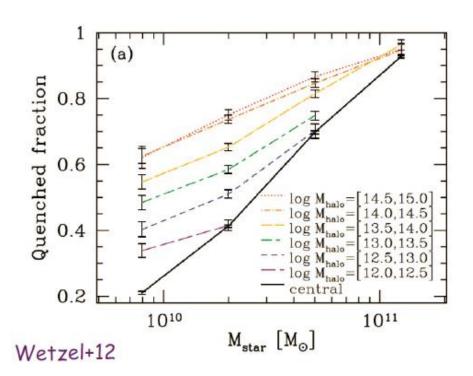
... or (temporary?) quiescence ...

... but that it can also trigger the formation of stars ...

... and alien life forms ?

Mechanisms:

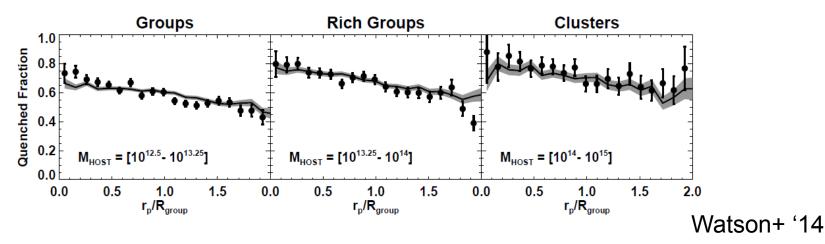
quenching	maintenance
Halo Quenching Preheating Quasar Mode Feedback Stellar Feedback Morphological Quenching	Gravitational Heating Thermal Conduction & Diffusion Radio Mode Feedback AGB Heating

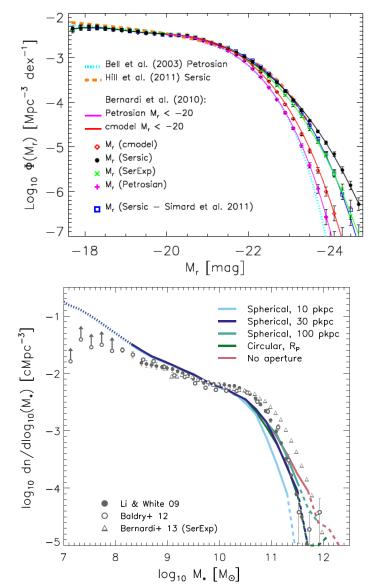

Satellites

Strangulation

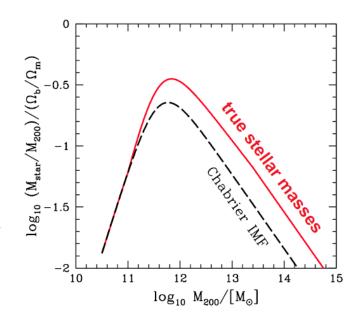
Ram-Pressure Stripping Tidal Stripping Van den Bosch

<u>Are satellite-specific quenching</u> <u>mechanisms required?</u>


- Wilson, vd Bosch: Quenched fraction depends both on galaxy and environment, separable at z=0
- Wilson:
 - Stellar mass acts as dimmer
 - Environment acts as switch
- Moster, Behroozi, Rudnick: Satellites are like


<u>Are satellite-specific quenching</u> <u>mechanisms required?</u>

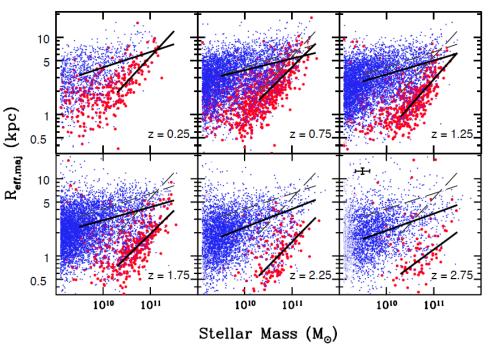
- Somerville: SAMs use them, but quench satellites too effectively
- Van den Bosch: Hearin/Watson showed that abundance + age matching reproduces observations.
 - Subhalo formation time is all that matters
 - No need for satellite specific processes


<u>Do massive galaxies grow more</u> <u>than we thought?</u>

- Bernardi: Sky subtraction, aperture size, choice of Sersic fit, M/L at fixed IMF all important. Decline of mass function less steep than before.
- Crain: Models may not need changing, need to do comparison properly.
- Less quenching? Outer parts probably accreted → formed in lower mass galaxies!

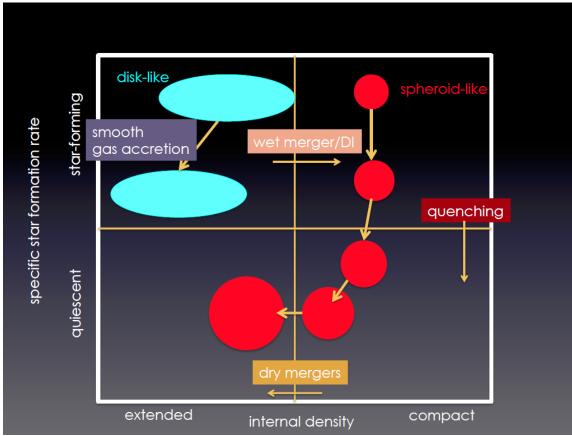
<u>Do massive galaxies grow more</u> <u>than we thought?</u>

- Dutton: Dense galaxies have bottom-heavy IMF → more massive than we thought
- Note:
 - IMF would then vary with radius → most of the extra mass may have more ordinary IMF
 - Models and observations care mostly about massive stars. Lowmass stars only affect gas consumption and gravity → no big changes needed to accommodate bottom-heavy IMF



<u>Do massive galaxies grow more</u> <u>than we thought?</u>

- Kaviraj: UV observations indicate that SF in ETGs adds 30% of stellar mass after z~1.
- Davis:
 - > 22% of Es have molecular gas, which is forming stars at relatively low efficiency (*Martig:* Morphological quenching)
 - Kinematics suggest gas has external origin (accreted or cooled as opposed to stellar mass loss)
 - No cold gas in slow rotators (i.e. most massive Es)


What do quenched galaxies look like?

- Bell, van der Wel, Somerville, Bernardi:
 - n_s > 2.5
 - Large B/D (Jahnke: bulge not an active player)
 - M_{\star} > 3e9 M_{\odot} if central
 - Oblate/triaxial axis ratio
 - High surface density
 - High velocity dispersion
 - Compact

How/when are galaxies quenched?

 Somerville/Schawinski: Observations indicate quenching + morphological transformation go together.

Halo quenching

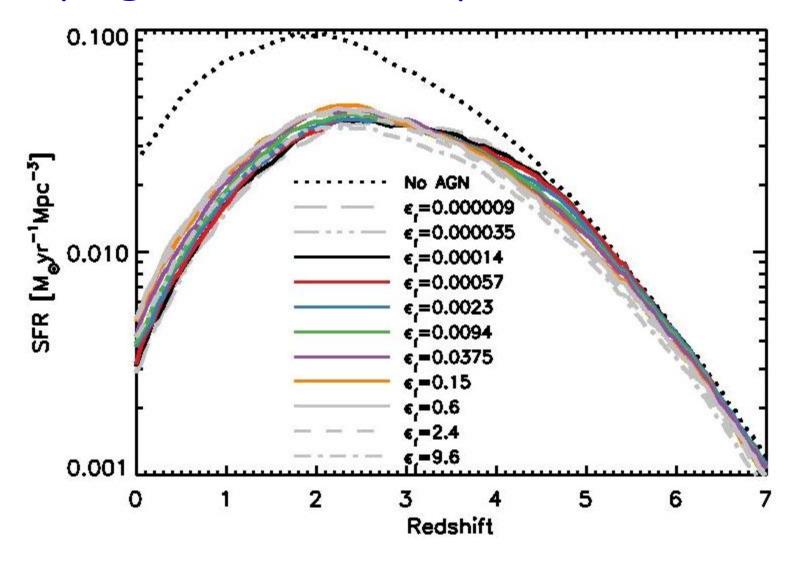
- Birnboim/van de Voort: Change of accretion mode at ~10^{12} M_{\odot}
- Van de Voort: Transition to hot halo does not quench by itself, need AGN
- Why then do quenched galaxies live in haloes with M > $10^{12}~M_{\odot}$?
 - SAMs (Fanidakis/Somerville): Affects accretion mode, BH fed by hot halo → radio mode. Works well for galaxy and BH properties. Not for ICM?
 - Questions: Why would BH mode care about accretion onto galaxy? Could it be that the same feedback operates differently in a hot halo?

- Enormous amount of energy to play with: $0.1 M_{BH}c^2 \gg M_{*,bulge}\sigma^2$
- Black hole radius of influence completely unresolved
- \rightarrow anything goes!

However, we do have some understanding (*King, Costa*):

- Outflow first momentum-driven, but becomes energy-driven at ~ 10² pc
- Expect ~ 5% of radiated energy to be coupled
- \rightarrow Thermal bomb on a scale ~ resolution of simulations

If BH growth is self-regulating, as in most models, then freedom is severely limited (*Croft, Teyssier*):

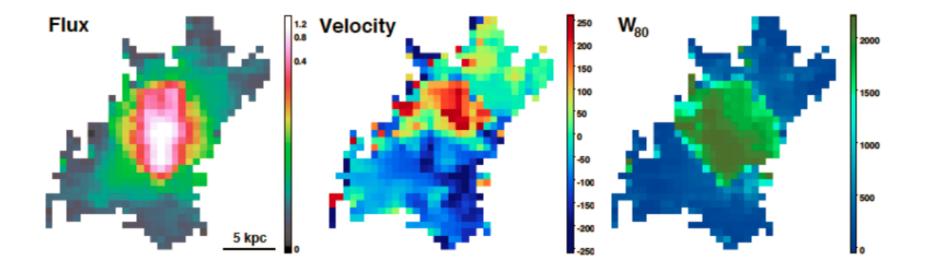

- BH mass is the only thing that depends on fraction of accretion energy that is in the bombs
- Result insensitive to details like accretion and seeding, provided the BH grows in absence of feedback

Jahnke: BH scaling relations result of merging, not self-regulation

However:

- Sensible for quenched galaxies, but Soltan argument implies gas accretion drives growth for active galaxies?
- Very important to extend BH scaling relation to starforming galaxies

Varying the efficiency of AGN feedback

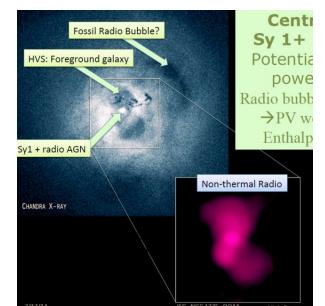


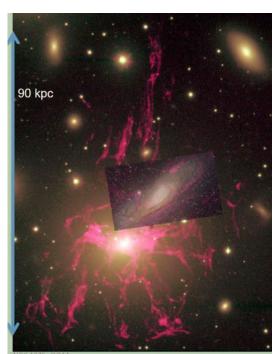
Booth & JS (2009, 2010) Also *Teyssier* talk

- Stellar mass dependent on assumed efficiency of feedback from star formation
- Efficiency (thermal losses) cannot be predicted until structure of ISM is resolved
- → Stellar feedback is no less (more?) "anything goes" than AGN feedback

Evidence for guasar-mode feedback:

- Zakamska: High-L radio-quiet QSOs surrounded by spectecular OIII nebulae.
 - Spectra suggest outflow of ~800 km/s over ~10 kpc.
 - Energy in outflow accounts for ~ 2% of L_{AGN}




Can AGN quench disks?

- Difficult because outflow takes path of least resistance (Cielo, Costa)
- Hot bubble may induce rather than halt SF (King)
- Fortunately, we heard that observations indicate that they do not have to:
 - Only Es need to be quenched fast (Schawinsky, Somerville)
 - Disk SSFRs independent of $M_* \rightarrow \text{tilt}$ of MS due to change in B/T (Abramson+ '14)

Radio mode (= maintenance mode?)

- La Franca: No radio loud/radio quiet bimodality
- Strong evidence that ICM knows about radio mode (*Pfrommer, Canning, Gallaghar*)
 - Is the cool gas uplifted or does it condense out? Probably the latter (Canning, Gallaghar)
 - Does cool gas trigger the AGN or does the jet trigger cooling?
 Second option would not give self-regulation...
- Cosmic ray heating (*Pfrommer*)

Can radio mode be the quenching mechanism?

- Quenching must happen in low-mass groups, not clusters
- Can low $f_{\rm gas}$ within $R_{\rm 500}$ be caused by buoyant bubbles?
- Radio mode operates when BH growth is slow \rightarrow Difficult to explain BH scaling relations

<u>Maintenance:</u> Balancing cooling w/o AGN:

- Conduction: no (O'Shea, Hopkins)
- Stellar mass loss: no, may even make it harder (*Hopkins, Bregman*)
- Gravitational heating: no (Hopkins)
- SNIa (bulge/low-mass Es): yes (Bogdan, Groves)

CGM

- Cool/warm gas (absorption):
 - Not much difference between red and blue galaxies, except for OVI (*Werk*)
 - Lots of gas and metals around galaxies (Werk, Hennawi)
 - Complexity not captured by simulations *(Hennawi)*
- Hot gas in emission (Anderson):
 - No break in X-ray scaling relations from clusters to galaxies
 - Hot gas around isolated Es does not account for missing baryons

Radiation

- Sources: AGN (Lusso), X-ray binaries, WDs (Gilfanov), (Post-)AGB (Marigo)
- HeII4686 rules out accreting WDs as progenitors of SNIa (Woods)
- LINERS are mostly not AGN → don't just throw them out of your sample (Singh)
- Gnedin: Usually unimportant and don't need radiative transfer where it matters

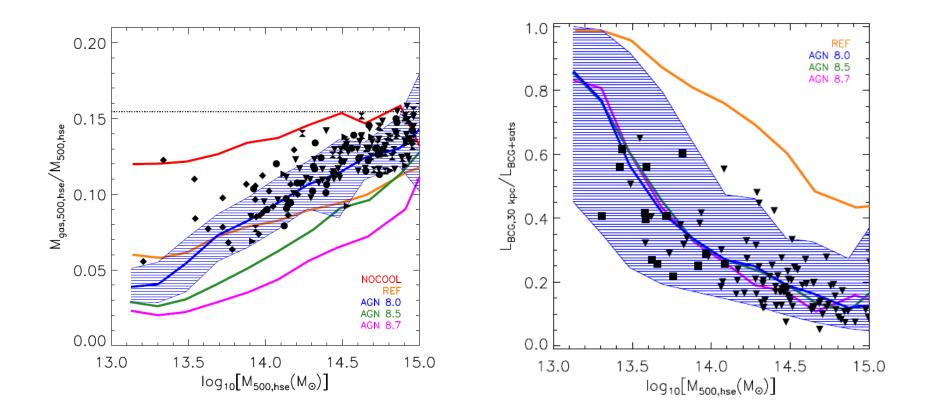
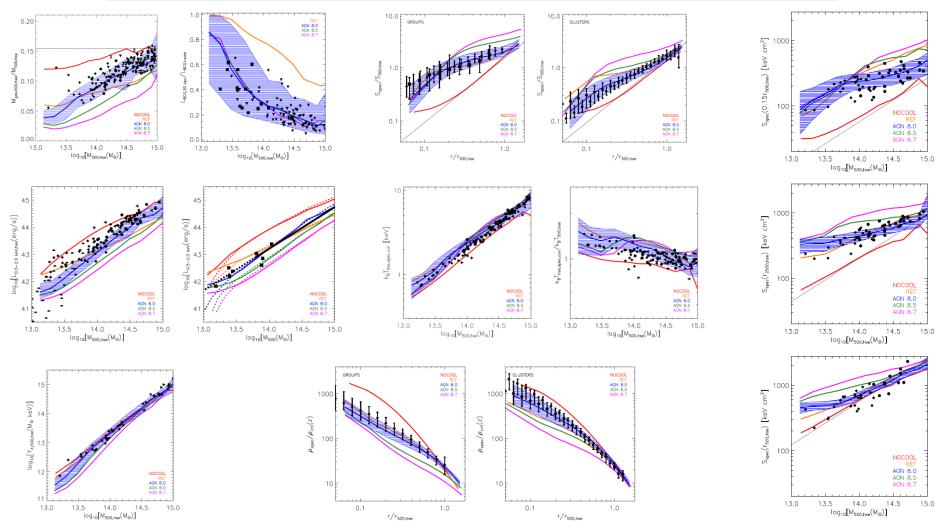

Damping/self-regulation

 Photo-ionisation by XRBs suppresses CGM cooling rate, changes transition from cold to hot accretion (Cantalupo, Kannan)

- Note: scales as SFR \rightarrow regulation rather than quenching

- Non-equilibrium can slow down (or speed up) cooling.
 Cannot just assume ionisation/chemical equilibrium (Richings)
- Martig: Morphological transformation accompanied by Morphological Quenching (Damping?). Bulge stabelizes disk due to lower disk mass and larger shear/Coriolis.
- *Meidt:* Streaming motions reduce SF efficiency


Look at stars and CGM simultaneously

Amount of feedback energy less important than the manner in which it is injected!

(Cosmo-)OWLS: Le Brun+ '14; McCarthy+ '10

Thermal bomb AGN FB works

Stellar metallicities too low, rest works well

(Cosmo-)OWLS: Le Brun+ '14; McCarthy+ '10

<u>How does thermal bomb AGN FB operate in</u> <u>this successful model?</u>

- <u>Pre-ejection</u> of low-entropy gas: ejected from progenitors of todays groups/clusters
- Replaced by high-entropy gas that was never heated by the AGN-driven outflow
- Higher entropy \rightarrow reduced cooling rate
- Nearly all of the action takes places at high z, when the BHs grew and the stars were formed

Quenching logic (pun intended):

Observations indicate that:

- 1. Disks are star-forming
- 2. Bulges are quiescent

From this it follows that:

- Quenched galaxies have very high B/T (and associated properties: e.g. compact, high surface density, high vel. dispersion, high Sersic index)
- Quenched galaxies live in environments that are not conducive to disk growth
 - In orbit around another galaxy; or
 - At the center of a halo w/o cold flows
- Quenching mechanism must be
 - Ineffective in disks, e.g. nuclear outflow
 - Effective during morphological transformation, e.g. nuclear outflow triggered by wet merger or violent disk instability

THANKS TO THE ORGANIZERS!