The Massive, Enriched, Cool Gaseous Envelopes Around Galaxies

Jessica Werk, Hubble Fellow, University of California, Santa Cruz QNQ, July 2014

COS-Halos: Three Observational Realities

- 1. All L* galaxies, including quiescent galaxies, show significant HI absorption and other 'cool' metal ions to 150 kpc (Thom+12, Werk+13)
- 2. The cool gas is highly ionized, and metal-enriched. There is enough of it to account for > 50% of the baryon budget of an L* halo (Werk+14)
- 3. Red/blue dichotomy is reflected by the strong presence of OVI ('warm' gas) around SF galaxies, and its absence around non-SF galaxies (Tumlinson+11)

Absorption Line Experiments Using Quasars

Systematically Surveying the Halo Gas of Galaxies

1. Observations of Cool Gas to 150 kpc Around z~0.2 L* Galaxies

1. Observations of Cool Gas to 150 kpc Around z~0.2 L* Galaxies

1. Observations of Cool Gas to 150 kpc Around z~0.2 L* Galaxies

The HI Gas

- 1. A cool (10^4 K) medium with high covering fraction of N_{HI} > 10^{15} cm⁻² exists around nearly every L* galaxy, even ellipticals, to 150 kpc.
- 2. Thus, there is no obvious suppression of cool gas around massive quiescent galaxies.

The Low Ionization State Metals

- 1. Low-lon metals (Mg II) are present throughout the CGM, and have 50% covering fraction, to 150 kpc (Werk+13)
- 2. There is no obvious distinction between SF and quiescent galaxies
- 3. These low-ions seem to trace high $N_{\rm HI}$ ($> 10^{16}$ cm⁻²)

The Intermediate Ionization State Metals

- 1. Intermediate ionization state metals (SiIII, CIII) are very common throughout the CGM, and have 70% covering fraction to 150 kpc (90% for CIII). Werk +13
- 2. There is no obvious distinction between SF and quiescent galaxies.
- 3. There is a likely trend of decreasing column with impact parameter.

2. The Ionization State and Baryonic Content of the CGM to 150 kpc

The Cool (10⁴ K) CGM to 150 kpc at Low-Redshift

Facts:

- 1. Ubiquitous Neutral Hydrogen (HI) Tumlinson et al. 2013
- 2. Lots of ionized metals: Sill, Silll, CII, CIII, NII, NIII, MgII Werk et al. 2013
- 3. Atomic Physics tells us SiII, SiIII are probably the same temperature as HI, $\sim 10^4$ K

→ Most of the Hydrogen is Ionized (and sadly, unobservable directly) AND, we have to model it to determine the ionization fraction.

CLOUDY Photoionization Modeling

CUBA COSMIC ULTRAVIOLET BACKGROUND A COSMOLOGICAL 1D RADIATIVE TRANSFER CODE BY

To Determine Physical Conditions:

FRANCESCO HAARDT AND PIERO MADAU

- 1. Ionization Parameters (robustly)
- 2. Gas Metallicity (not so well, since HI is saturated)
- 3. Gas Densities
- 4. Total Hydrogen Column

Cloudy & Associates

Photoionization Simulations for the Discriminating Astrophysicist Since 1978

The Surface Density of Hydrogen

Integrate surface density from 0 – 160 kpc, and calculate total mass:

Strict lower limit: 2 x 10^{10} M $_{\odot}$

Conservative Estimate: 6 x 10¹⁰ M_☉

The Baryonic Content of the Cool CGM: What Missing Baryon Problem?

- 1. OVI is more common around star-forming galaxies than around massive, red, ellipticals (SF = 90%; Red = 30%) Tumlinson+11
- 2. There is a likely trend of decreasing column with impact parameter.

What is the Physical State of the Gas in the CGM?

- 1. Equilibrium considerations: What is the origin/fate of all the cool gas 10 150 kpc from galaxies? Will this cool gas drive new SF?
- 2. The Physical Conditions Giving Rise to OVI: How does OVI coexist with cool gas, and why is OVI an absent ionization state of Oxygen around "quenched" galaxies?
- 3. Does Environment matter?

Volume Density

 $U = \Phi_{tot} / n_H c$

Pressure Equilibrium: Two-Phase Solutions

- Mo & Miralda-Escude 1996: Cool (10⁴ K) clouds in pressure equilibrium with diffuse, hot (10⁶ K) halo gas
- Maller & Bullock 2004: predict a hot gas density profile evolving adiabatically from original NFW distribution
- Cool, pressure-supported clouds condense out of hot medium

Physically, we rule out a simple model of the CGM that includes cool 10⁴ K clouds in pressure equilibrium with a hot 10⁶ K medium. At these densities, cooling times are short.

COS-Halos Stacks: Why No NV?

There is no NV in the CGM

Rule out: Simple PI, PINE, CIE, CINE (too much SiIV) PI + Soft X-rays?? (i.e. Cantalupo 2010)

Rule out: TMLs and CIs CIs don't make enough OVI (LogN ~ 13)

Galaxy SED: Constructing a 10 Ryd Bump with Soft-Xrays

Cantalupo 2010:

SN and XRBs produce soft x-rays Tunables: Galaxy N_{HI}, SFR, d, f_{esc}

To fit NV/OVI:

 $Log N_{HI} = 20$

SFR = 100

 $F_{esc} = 1\%$ (or lower)

d = 50 kpc

Naturally explains OVI dichotomy, but does not offer insight on quenching problem.

Shock Ionization, Radiative Cooling via Recombination

- Shock Ionization: Gas cloud moves with v > local sound speed, there is a shock front at the leading edge of the cloud, shock velocities between 200 500 km/s (Dopita & Sutherland 1996)
- Radiative cooling: hot gas cools down by radiative recombination (Edgar & Chevalier 1986), evolution of cooling is isochoric or isobaric.

EUV/Soft X-ray spectrum from radiative shocks

Clouds are moving fast enough to create shocks in SF galaxies. There is no shock creation in quiescent galaxies...clouds have slowed?

Summary and Conclusions

- 1. All L* galaxies, including quiescent galaxies, show significant HI absorption and other 'cool' ions to 150 kpc (Thom+12, Werk+13)
- 2. The cool gas is highly ionized, and therefore there is enough of it to account for > 50% of the baryon budget of an L* halo (Werk+14)
- 3. The cool gas is not in pressure equilibrium with a hot, ambient medium. Cooling times are short (~108 years).
- 4. Red/blue dichotomy is reflected by the strong presence of OVI ('warm' gas) around SF galaxies, and its absence around non-SF galaxies (Tumlinson+11)
- 5. OVI does not arise from simple photoionization in the presence of some EUVB. Collisional Ionization seems unlikely. It is a mystery that remains to be solved, but the absence of NV is illuminating.

