NGC 1275—Feedback in Action

Jay Gallagher—U. Wisconsin & R. Canning, A. Fabian & crew, R. W. O'Connell J. Ryon, E. Zweibel, R. Kotulla

JSG--NGC 1275--Q

PERSEUS (A426)-Cool Core Cluster Chandra reveals complex galaxy-cluster IGM connections (A. Fabian+) Dispersion 1030 km/s M~5x10¹⁴ Msun, M_{gas}~7x10¹³ Msun NGC 1275 BCG-Laboratory for feedback

Sanders & Fabian 2007, MNRAS, 381, 1381

Sound waves in the Perseus cluster core 1383

Figure 1. Surface brightness images of the cluster. Left-hand panel: 0.3–7 keV full-band X-ray exposure-map-corrected image, smoothed with a Gaussian of 1.5 arcsec. Middle panel: Image after subtracting King model fits to 40 sectors, smoothed with a Gaussian of 1.75 arcsec. Right-hand panel: Original image after high-pass filtering, then smoothing with a Gaussian of 1.5 arcsec.

High Velocity System ~3000 km/s redshift with respect to N1275 Absorbing cool gas-disrupted galaxy (spiral?) well in front of Per A (Rubin et al. 1977, ApJ, 211) D>60 kpc $M(gas) \sim 1E9 Msun$ KE(gas) ~ 10^{59} erg Gas from infalling galaxy a heating factor

Gillmon et al. 2004, MNRAS, 348, 159; Sanders & Fabian 2007, MNRAS, 381, 1381

BCG NGC1275 M.~6x10¹¹ Msun

Giant Ionized Gas Filaments/ Sheets-> Signatures of ongoing feedback?

JSG--NGC 1275--QQ14

Optical galaxy overpressured? R<25 kpc : **10¹⁰ Msun of ICM**

Hydrostatic pressure equilibrium → Ionized gas density ~10² cm⁻³ @ T=10⁴ K

Molecular gas $\sim 10^4 \text{ cm}^{-3} @ \text{T}=10^2 \text{ K}$

B_{eq} ≈ 100 μG

Horizontal filament thread B support: $B_h \approx (4\pi\Sigma_{20}[\sigma^2/R])^{1/2}$ $\approx 12 (\Sigma_{20})^{1/2} \mu G$ (molecular filament problem!) 968

454,

NGC1275: ISM Structure & Properties: Stabilizing A Cooling ICM

COOL GAS SINKS

- AGN
- Supernovae
- Gas heating
- Star Formation
- High V impacts

<u>COOL GAS SOURCES</u> + ICM cooling + Stellar mass loss + Stripped gas

Hα + emission lines: HST/ACS

Ionized gas densities

EM~10³ pc cm⁻⁶ W_{fil} ~100 pc $N_e > 3f^{-0.5} cm^{-3}$ ~10 cm⁻³

 $2 \times 10^5 M_{\odot} kpc^{-1}$

M(HII) ~few x 10⁸M_☉

Thin extended filaments→ Magnetic fields

JSG--NGC 1275--QQ14

Fabian et al. (HST Team) 2008, Nature

WIYN Densepak IFU total velocity range ~400 km/s

 $V(fil) \sim 200 \text{ km/s}$ $<< c_s(IGM)$

Dynamically cool Not hot ISM shocks!

 $E(fil) \sim M(fil) < v^2 > 2 < 4e57 erg$

Cigan, Gallagher et al. Hatch+

Filaments : most of gas mass is *molecular*. Estimated $M_{mol} \approx 10^{10}$ Msun $\approx M_{hot}$ (<25 kpc) Filaments too dense to "float" with B-field Dust!; Efficient line cooling Filaments grow in situ?

WIYN H α +[NII] CFHT H₂-narrowband Lim+ 2012, ApJ, 744

Lim+ 2008, ApJ, 672

20 0 -20Right Ascension offset (arcsec)

offset (arcsec

20

0

7/17/14

P/k ≈ 10⁶ → $n_e \approx 10^2 \text{ cm}^{-3}$ for $T_e \approx 10^4 \text{ K}$ EM → $n_e^2(2r)_{fil}$ → $\langle n_e \rangle \leq 10 \text{ cm}^{-3}$ → Gas filling factor << 1 - ionized <u>surfaces</u> → Molecular gas T≈100 K $\langle n_{H2} \rangle \approx 10^4 \text{ cm}^{-3}$ Multi-phase medium key to feedback process

Figure 16. Emission measure profiles across the filaments in the different temperature components. The top panel shows an unsharp-masked 0.5–7 keV X-ray image rotated so that the bins lie across it. The second panel shows a similar H α image. The next panels show the 0.5-, 1-, 2- and 4-keV temperature component XPEC normalizations, measured from the 1 arcsec wide bins. The final panels show the best-fitting absorbing hydrogen column density and the metallicity of thermal components.

LOCAL FEEDBACK

Enhanced X-ray at filaments Increased ICM cooling rates Unstable feedback on IGM?

Filaments → cooling → filaments OR Filaments → heating → evaporation *Depends on heating/cooling rates*

Filaments can stimulate filament growth (Voit et al. 2008 ApJ, 681)

Filament seeding issue

Sanders & Fabian 2007, MNRAS, 381, 1381 JSG Notre Dame

HII optical (contours) & X-ray emission closely related

Figure 3. Left: contours from the H α image rotated 50° counter-clockwise overlaid on a lightly smoothed X-ray image with levels chosen to emphasize the outer rising bubble. Right: a rising air bubble in water from Batchelor (1967, plate 15c; originally from Collins 1965).¹ This is effectively a two-dimensional bubble since it is confined between closely spaced parallel plates, but shows the cross-section and flow pattern well (see Van Dyke 1982 for a full bubble). The effect of surface tension is negligible in the right-hand panel (Batchelor 1967). Magnetic fields inside the bubble in the left-hand panel are sub-equipartition (Fabian et al. 2002), so unlikely to influence strongly the comparison here. A gas bubble in water may oscillate from side to side while rising.

Enhanced cooling + upward gas transport Are we seeing a wet-phase BCG-galaxy "drying out" process as cool gas is transported outwards? *Do outer filaments disrupt/evaporate?*

Fabian et al. 2003, MNRAS, 344, L48

JSG Notre Dame

HST images: radial "seed" filaments at base of horseshoe

JSG--NGC 1275--QQ14

Central massive young star clusters: Signposts of past intense star formation events

In-falling spiral

NGC 1275 ACS—Spatially filtered image by Leah Fullmer

7/17/14

7/17/14

NGC 1275 WIYN: outer ionized filaments & young stars ()

Complex stellar structure across main body: Mergers vs. star formation?

"B-V" color map ACS Images

NGC 1275—SOUTH HALF Shell structures—bluer, younger—ages ≤ 1 Gyr (R. Canning et al. 2010, MNRAS, 405,115)

NGC 1275—*Outer* Young Stars & HII Filaments HST WFC optical + SBC FUV

Canning, Ryon, Gallagher+ 2014, MNRAS in press

JSG Notre Dame

Southern Star Forming Loop: Star Clusters in Galaxy Outskirts

ACS SBC 140LP (far UV)

ACS F555M (V-band)

7/17/14

Canning, Ryon, Gallagher, O'Connell et al. 2014 MNRAS in press

Mode for globular cluster formation? High GC frequencies in massive spheroids indicate process other than dry mergers?

NGC1275 ACS F435W Main body Structures

Mergers? Star formation?

Gallagher, Canning, Fulmer, in preparation

NGC 1275 X-ray Halpha UV Combo

Canning+ 2014, MNRAS

Life Cycle of NGC1275/BCG?

Summary

- NGC 1275 strongly interacting with surrounding ICM; seen in x-ray \rightarrow optical \rightarrow radio
- Radio lobes imply feedback via ICM/ISM displacement, • heating and likely filament seeding
- Magnetic fields play a significant role in filaments
- Filaments host multi-phase cool ISM; grow by • condensation in inner galaxy
- Filaments host some star formation; some outer filaments form stars along entire length. Part of pressure/velocity transition to filament disruption?
- Central YMCs suggest major SF event 100-300 Myr ago
- NGC1275 could fit in cyclical feedback process in cool core galaxy clusters. 7/17/14