The structures of quenched galaxies

Eric F. Bell University of Michigan

Motivation

- Structures of galaxies reflect manner of galaxy growth
 - Disks; conservation of some angular momentum
 - Spheroids; violent relaxation, accretion of material from lots of axes
 - Extended vs. compact; how much dissipation of energy, loss of angular momentum?
- Want to know are structures of quiescent galaxies distinctive? Does that tell us about how they evolve?

- Central Quenched galaxies what are their characteristics?
 - Continuous growth of the population
 - quenching happens at all epochs z<3, ~half at z
 More compact than star-forming peers
 - Must be centrally-concentrated / have a bulge
 - ~No bulgeless central quenched galaxies
 - Wide range of stellar masses > 3x10⁹M_{sun}
 - ~No low-mass central quenched galaxies
 - Most have oblate axis ratios (intrinsic c/a~0.25)
 Oblate spheroids
 - Best correlations with bulge mass / B/T / Sersic / core mass
 - Considerable scatter can find star forming galaxies with big bulges.

van der Wel et al. (2014)

3D-HST+CANDELS (photz+grism z) Sersic fits of WFC3 IR data; corrected to rest-frame g

SF much larger than quiescent; dissipation very imp. in setting quiescent sizes Quiescent population grows in number density z~3 to the present day (at wide range of masses;e.g., Brammer+11, Muzzin+13)

- Central Quenched galaxies what are their characteristics?
 - Continuous growth of the population
 - quenching happens at all epochs z<3, ~half at z<1
 - More compact than star-forming peers
 - Must be centrally-concentrated / have a bulge
 No bulgeless central quenched galaxies
 - Wide range of stellar masses > 3x10⁹M_{sur}
 - ~No low-mass central quenched galaxies
 - Most have oblate axis ratios (intrinsic c/a~0.25)
 Oblate spheroids
 - Best correlations with bulge mass / B/T / Sersic / core mass
 - Considerable scatter can find star forming galaxies with big bulges.

Geha et al. 2012 Quenched central fraction as a function of stellar mass

Below 3x10⁹ M_{sun} there are no central quenched galaxies

- Central Quenched galaxies what are their characteristics?
 - Continuous growth of the population
 - quenching happens at all epochs z<3, ~half at z<1
 - More compact than star-forming peers
 - Must be centrally-concentrated / have a bulge
 - ~No bulgeless central quenched galaxies
 - Wide range of stellar masses > $3 \times 10^{9} M_{sun}$
 - ~No low-mass central quenched galaxies
 - Most have oblate axis ratios (intrinsic c/a~0.25)
 Oblate spheroids
 - Best correlations with bulge mass / B/T / Sersic / core mass
 - Considerable scatter can find star forming galaxies with big bulges.

Yu Yen Chang, van der Wel, et al. (2013; submitted) CANDELS Sersic fits + photoz

- Disks common z>~1.5 massive galaxies (quiescent)
- Triaxial by z~0 merging (major/minor)
- Quiescent galaxies oblate at lower masses (all z)

van der Wel

(2011)

- Central Quenched galaxies what are their characteristics?
 - Continuous growth of the population
 - quenching happens at all epochs z<3, ~half at z<1
 - More compact than star-forming peers
 - Must be centrally-concentrated / have a bulge
 - ~No bulgeless central quenched galaxies
 - Wide range of stellar masses > $3 \times 10^{9} M_{sun}$
 - ~No low-mass central quenched galaxies
 - Most have oblate axis ratios (intrinsic c/a~0.25)
 - Oblate spheroids
 - Best correlations with bulge mass / B/T / Sersic / core mass
 - Considerable scatter can find star forming galaxies with big bulges.

Cheung et al. 2012

Stellar mass and magnitude correlate poorly with quiescence Velocity dispersion, Surface density, Sersic index, projected density in 1kpc correlate well with quiescence

van Dokkum et al. 2014

Estimated mass within 1kpc sphere Galaxies with total mass above 10¹¹M_{sun}

Quiescent fraction correlates with core mass....

7/15/14

- Central Quenched galaxies what are their characteristics?
 - Continuous growth of the population
 - quenching happens at all epochs z<3, ~half at z<1
 - More compact than star-forming peers
 - Must be centrally-concentrated / have a bulge
 - ~No bulgeless central quenched galaxies
 - Wide range of stellar masses > $3 \times 10^{9} M_{sun}$
 - ~No low-mass central quenched galaxies
 - Most have oblate axis ratios (intrinsic c/a~0.25)
 - Oblate spheroids
 - Best correlations with bulge mass / B/T / Sersic / core mass
- Weak stellar mass correlation
- → Naïve implication that models where quenching is from halo mass alone disfavored

Correlation with bulge or core mass / B/T / Sersic / core density

→ May be consistent with pictures where bulge formation heats or ejects gas, or large black holes provide feedback

7/15

What is halo and bulge mass doing?

Quiescent fraction varies strongly with black hole mass.

Little variation with halo mass.

In this model the AGN is the agent of quenching

7/15/14

Fraction of Quenched Galaxies