

The ionising radiation of AGN: Ultraviolet quasar composite from WFC3

Elisabeta Lusso

INAF - Arcetri Observatory, Italy

J. F. Hennawi (MPIA), G. Worseck (MPIA), J. X. Prochaska (UCSC), J. M. O'Meara (Saint Michael's College), J. Stern (MPIA), and C.Vignali (Unibo)

"Quenching & Quiescence" Heidelberg, Germany. July 14-18, 2014

Elvis+94, Richards+06, Krawczyk+13, Shang+11, Elvis+12

Lusso+10

but see also Edelson&Malkan+86, Ward+87, Kriss+88, Sanders+89, Elvis+94, Richards+06, Krawczyk+13, Shang+11, Elvis+12 transition region: from nucleus to galaxy

from nucleus to galaxy

but see also Edelson&Malkan+86, Ward+87, Kriss+88, Sanders+89, Elvis+94, Richards+06, Krawczyk+13, Shang+11, Elvis+12

but see also Edelson&Malkan+86, Ward+87, Kriss+88, Sanders+89, Elvis+94, Richards+06, Krawczyk+13, Shang+11, Elvis+12

but see also Edelson&Malkan+86, Ward+87, Kriss+88, Sanders+89, Elvis+94, Richards+06, Krawczyk+13, Shang+11, Elvis+12

but see also Edelson&Malkan+86, Ward+87, Kriss+88, Sanders+89, Elvis+94, Richards+06, Krawczyk+13, Shang+11, Elvis+12

- According to the classical Soltan argument
 L_{QSO} = ε dM/dt c²
 build up of SMBH is a fundamental ingredient in every galaxy/BH
 co-evolution studies
- **Radiative or quasar-mode feedback**: strongly depends on L_{QSO} and on the (shape) quasar SED (zero-order assumption: one unique SED at every quasar luminosity and redshift)

UV spectra of BH accretion disks

UV spectra of BH accretion disks

- Expect a break in the UV (black body) which depends on BH mass (and on how the IGM correction is done)
- Expect less massive BH to be hotter

Understanding the spectrum of BH AD

If one assumes:

- AGN luminosity derived by accretion
- Particle erg dissipated locally at distance r and optically thick medium: black body
- Virial theorem

rem

$$T = \left(\frac{GM\dot{M}}{4\pi\sigma r^{3}}\right)^{1/4} \sim 6.3 \times 10^{5} \left(\frac{\dot{M}}{M_{E}}\right)^{1/4} M_{8}^{-1/4} \left(\frac{r}{R_{S}}\right)^{-3/4}$$

$$r = 3 \text{ R}_{S} ; \lambda = 0.1 ; M_{BH} = 10^{6} \text{ M}_{\odot} \Rightarrow T \sim 5.0 \times 10^{5} \text{ K}$$

r = 3 R_S ;
$$\lambda$$
=0.1 ; M_{BH} = 10⁸ M _{\odot} \Rightarrow T~1.5 ×10⁵ K

The disc temperature decreases as the black hole mass increases

We expect to see the location of the break changing as a function of M_{BH}

Understanding the spectrum of BH AD

If one assumes:

- AGN luminosity derived by accretion
- Particle erg dissipated locally at distance r and optically thick medium: black body
- Virial theorem

rem

$$T = \left(\frac{GM\dot{M}}{4\pi\sigma r^{3}}\right)^{1/4} \sim 6.3 \times 10^{5} \left(\frac{\dot{M}}{M_{E}}\right)^{1/4} M_{8}^{-1/4} \left(\frac{r}{R_{S}}\right)^{-3/4}$$

$$r = 3 \text{ R}_{\text{S}} ; \lambda = 0.1 ; \text{ M}_{\text{BH}} = 10^{6} \text{ M}_{\odot} \Rightarrow \text{T} \sim 5.0 \times 10^{5} \text{ K}$$

$$r=3~R_{\rm S}$$
 ; $\lambda{=}0.1$; $M_{\rm BH}=10^8~M_{\odot}$ \Rightarrow $T{\sim}1.5$ $\times10^5~K$

The disc temperature decreases as the black hole mass increases

We expect to see the location of the break changing as a function of M_{BH}

-26

-28

redshift

- The most massive BH (redshift > 2) poorly explored
- Previous works used overly simplistic and outdated models for the IGM correction
- Highly biased samples. Took whatever they find from the HST/FUSE archives which tend to be the UV brightest and hence bluest objects

BH growth at high z

- Construct for the first time the UV composite for QSO at redshift > 2
- State-of-the-art IGM correction: proper estimate of the uncertainties
- Clear sample selection

IGM absorption correction

10000 IGM transmission curves for a suite of different column densities via MCMC (calibrated from absorption lines)

IGM absorption correction

10000 IGM transmission curves for a suite of different column densities via MCMC (calibrated from absorption lines)

single correction for a broad range of redshift and models outdated

UV quasar composite

Before IGM correction

Lusso et al., in prep.

UV quasar composite: continuum fit

IGM correction employed by **Telfer+02** less than 1% over the whole composite, BUT

- 1. in the forest the correction should be >5% AND
- 2.at λ<600 (where there
 are <<20 z>2 quasars
 contributing) the
 correction is >>1%
 (~80%)!!

UV quasar composite: comparison Softer EUV slope (α_{EUV} ~-1.9) than Scott+04 (α_{EUV} ~-0.56)

and **Shull+12** (*α*_{EUV}~-1.41)

Done+12


```
DATA \begin{cases} M_{BH} = 6 \times 10^9 M_{\odot} \\ \lambda_{Edd} = 0.35 \\ \Gamma = 1.9 \\ (a=0.8) \end{cases}
```


 $\log \nu$ [Hz]

Conclusions

- Current estimates of AGN SEDs do not properly take into account absorption by neutral hydrogen
- First UV quasar composite at redshift higher than 2 with proper IGM absorption correction
- Softer EUV continuum than low luminous/low redshift (low M_{BH}) quasar samples
- The peak of the BBB does not depend on M_{BH} only (but BH spin is also involved)