

Next Generation (Semi-)Empirical galaxy formation models -Matching individual galaxies

Benjamin Moster (IoA/KICC)

Simon White, Thorsten Naab (MPA), Rachel Somerville (Rutgers), Frank van den Bosch (Yale), Andrea Macciò (MPIA)

Rob Crain @rcrain_astro

27 Apr

Just occurred to me that this summer's **#qnq2014** conference starts the morning after the World Cup final. Monday morning might be difficult.

Expand

Benjamin Moster Next-Gen Empirical galaxy formation models He

Why (semi-)empirical models?

- Model observations in self-consistent cosmological framework
 - Build-up of stellar mass over time and relation to DM haloes
 - What determines galaxy mass and clustering properties
 - What sets the SFR? When/how is it triggered/quenched?
 - What does the stochastisity in GF depend on?
- Ab initio models: motivated by baryonic physics
 try to predict statistical galaxy properties (e.g. SMF, CF, SSFR)
 - Hydro Sims: uncertain, unresolved physics, comp. expensive
 - SAMs: large parameter space, may not include all rel. physics
- Empirical Models: link stellar mass and halo mass statistically
 put constraints on physical processes involved (SF, FB, ...)
 - 3 Benjamin Moster Next-Gen Empirical galaxy formation models Heidelberg, 14.07.2014

Abundance matching & parameterized linking

- Produce galaxy catalogue from observed SMF in same volume as halo catalogue
- Match galaxies-haloes by mass
- Optional: Use fitting-function to get m*(Mh)

$$m_*(M_h) = 2 R M_h \left[\left(\frac{M_h}{M_1} \right)^{-\beta} + \left(\frac{M_h}{M_1} \right)^{\gamma} \right]$$

4 Benjamin Moster Next-Gen Empi

Next-Gen Empirical galaxy formation models

Abundance matching & parameterized linking

- Produce galaxy catalogue from observed SMF in same volume as halo catalogue
- Match galaxies-haloes by mass
- Optional: Use fitting-function to get m*(Mh)

 $m_*(M_h) = 2 R M_h \left| \left(\frac{M_h}{M_1} \right)^{-\beta} + \left(\frac{M_h}{M_1} \right)^{\gamma} \right|$

- Assume function for m*(Mh)
- Populate haloes with galaxies
- Compute model SMF
- Fit parameters to observed
 SMF

Derive m*(Mh) individually for a set of redshifts

4 Benjamin Moster Next-Gen Empirical galaxy formation models Heid

Abundance matching & parameterized linking

Benjamin Moster Next-Gen Empirical galaxy formation models 4

Evolving stellar-halo mass relation

- Evolving relation, but satellites are forced to follow the local one
- Inconsistency between different redshifts
- Assume redshift dependent parameters MI(z), N(z), $\beta(z)$, $\gamma(z)$
- Stellar-to-halo mass relation now depends on M_{infall} and z_{infall}
- Fit m_s(M_h,z) using all
 SMFs simultaneously
 using a MCMC
- SMFs can be fitted to high redshift

5 Benjamin Moster

Next-Gen Empirical galaxy formation models

Inferred SFRs and accretion rates

- Identify all progenitors at previous snapshot
- SFR = total growth rate accretion rate
- SFR peaks at some redshift and declines again
- Use derived SFR relation to predict SSFRs
- Model predictions are in excellent agreement

6 Benjamin Moster

Next-Gen Empirical galaxy formation models

Scatter / Colour

- Expect haloes of same mass M to have galaxies with different stellar masses (due to different formation history)
- To include that, scatter drawn from lognormal distribution (0.15-0.2 dex) is added to average m_s-M_h relation
- SFR prediction only for average halo mass
 → no SSFR / colour information for individual galaxies
- Difficult to include individual SSFRs in average models (but cf Hearin & Watson)
- Simple models cannot predict colourdependence, e.g. for clustering...

7 Benjamin Moster Next-Gen Empirical galaxy formation models

Models for individual haloes

- So far: stellar masses from average m*-M_h relation (no growth history)
- Now: parameterize SF efficiency as function of halo mass: $\dot{m}_* / \dot{M}_h = \epsilon (M_h, z)$
- Stellar mass increases in one time-step as $\Delta m_* = \epsilon \cdot \Delta M_h = \epsilon \dot{M}_h \Delta t$

- Maximum SFR
 reached when
 M_h ~ 10₁₂ M_{sun}
- Afterwards SFR declines again

8 Benjamin Moster

Next-Gen Empirical galaxy formation models

Satellite galaxies in individual haloes

- While host halo grows → galaxy forms stars
- When host stops growing mass (loses mass)
 → galaxy continues forming stars at current
 SFR with exponential decline on time-scale T₁
- After time-scale T₂ has passed
 → SF is completely quenched (cf.Wetzel et al.)
- Time-scales can be constrained by fitting to quenched fractions vs stellar mass

M

 M_2

 M_3

 M_4

tı

 t_2

t₃

t4

SFR

SFR₂

SFR₃

 $SFR_4 = 0$

9 Benjamin Moster Next-Gen Empirical galaxy formation models

Satellite stripping and merging

- While satellite orbits in a larger halo its subhalo loses mass
- When subhalo mass has decreased sufficiently, satellite stars become unbound and galaxy is stripped
- Model this effect by assuming satellite is stripped to ICM when halo mass is a fraction f_s of its peak mass: $M_h = f_s M_{peak}$
- Can be constrained with the I-halo term of the galaxy CF
- When subhalo finally merges (i.e. after dynamical friction time)
 → fraction f_m of the satellite mass is ejected to the ICM
 → the rest (I-f_m) · m_s is added to the central galaxy
- Is constrained by low z stellar mass function (massive end)

10 Benjamin Moster Next-Gen Empirical galaxy formation models Heidelberg, 14.07.2014

Constraints on the model

- Stellar Mass Functions to $z \sim 8 \rightarrow Constraints$ on ϵ (M₁), f_m
- Cosmic SFR density to z~9 → Constraints on ε's normalization
- SSFRs to $z\sim 8 \rightarrow$ Constraints on ϵ 's slopes (β,γ)
- Quenched Fractions \rightarrow Constraints on sat. quenching (τ_1, τ_2)
- I-halo term of galaxy CF \rightarrow Constraints on sat. stripping (f_s)

II Benjamin Moster Next-Gen Empirical galaxy formation models

Constraints and Predictions

- Empirical models can be particularly helpful for:
 - Constrain models with more detailed baryonic physics
 e.g. cooling, star formation, feedback...
 Now we can also compare to individual zoom-simulations
 - Making predictions without many uncertain assumptions on baryonic physics:
 e.g.
 - * high z clustering
 - * GRB delay times
 - * galaxy merger rates

Benjamin Moster

Next-Gen Empirical galaxy formation models

Galaxy merger rates

- Mean halo merger rates have a power-law dependence on mass
- Enhanced likelihood for major mergers for massive galaxies
- Low mass galaxies rarely experience major mergers

13 Benjamin Moster Next-Gen Empirical galaxy formation models

Merger rates for SF/quenched centrals

- Divide merger rates into two samples: SF/quenched central
- For low mass: SF galaxies are more likely to have a merger
- For high mass: Quenched and SF galaxies show similar merger rates

I4 Benjamin Moster Next-Gen Empirical galaxy formation models

Conclusions

- Self-consistent cosmological framework using constraints from the observed SMFs to connect galaxies to dark matter haloes
- SFR of massive galaxies peaked at high redshift (z~2) and is quenched afterwards → growth only through accretion
- Haloes can also be modelled individually by parameterizing the star formation efficiency
- Satellite quenching and stripping can be constrained with additional observations (quenched fractions, I-halo term of CF)
- Possible to divide computed galaxy statistics into SF/non-SF
- Next steps: include colours, gas, metallicity, etc...

I5 Benjamin Moster Next-Gen Empirical galaxy formation models Heidelberg, 14.07.2014