AGN Feedback

Andrew King

Dept of Physics & Astronomy, University of Leicester Astronomical Institute, University of Amsterdam

Heidelberg, July 2014

galaxy knows about central SMBH

how?

SMBH mass is completely insignificant: $M \sim 10^{-3} M_{\text{bulge}}$,

so its gravity affects only a region

$$R_{\rm inf} = \frac{GM}{\sigma^2} \sim 10 \frac{M_8}{\sigma_{200}^2}$$
 parsec

$$(M_8 = M/10^8 M_{\odot}, \sigma_{200} = \sigma/200 \text{ km s}^{-1})$$

- far smaller than bulge

why does the galaxy notice the hole?

SMBH releases accretion energy $\sim 0.1 M_{BH} c^2 \sim 10^{61}$ erg galaxy bulge binding energy $M_b \sigma^2 \sim 10^{58}$ erg

galaxy notices hole through energy release:

`feedback'

SMBH – host connection

SMBH in every large galaxy (Soltan)

but only a small fraction of galaxies are AGN

→ SMBH grow at Eddington rate in AGN

$$\eta c^2 \dot{M} = L = L_{\rm Edd} = \frac{4\pi GMc}{\kappa}$$
, $\kappa =$ electron scattering opacity

→ AGN should produce Eddington winds

Super-Eddington Accretion

most photons eventually escape along cones near axis

Eddington winds

momentum outflow rate

$$\dot{M}_{
m out}v = rac{L_{
m Edd}}{c} = \eta \dot{M}_{
m Edd}$$
 $v = rac{\eta c}{\dot{m}} \sim 0.1c$

where
$$\dot{m} = \dot{M}_{\rm out} / \dot{M}_{\rm Edd} \sim 1$$

energy outflow rate

$$\frac{1}{2}\dot{M}_{\rm out}v^2 = \frac{\eta}{2}.\eta c^2 \dot{M}_{\rm out} = \frac{\eta}{2}L_{\rm Edd} \simeq 0.05L_{\rm Edd}$$

(King & Pounds, 2003: cf later cosmological simulations)

Tuesday, 15 July 14

speed

outflow affects galaxy bulge

SMBH releases accretion energy $\sim 0.1 M_{BH} c^2 \sim 10^{61}$ erg galaxy bulge binding energy $M_b \sigma^2 \sim 10^{58}$ erg

even though only a fraction $(\eta/2) \simeq 0.05$ of accretion energy is in mechanical form, this is more than enough energy to unbind the bulge

how does the bulge survive?

wind shock

wind must collide with bulge gas, and shock – what happens?

either

(a) shocked gas cools: `momentum-driven flow' negligible thermal pressure - most energy lost
 or

(b) shocked gas does not cool: `energy_driven flow' thermal pressure > ram pressure

Compton cooling by quasar radiation field very effective out to cooling radius $R_C \sim 50 - 500 \text{ pc}$ (cf Ciotti & Ostriker, 1997, 2001)

initial expansion into bulge gas is driven by momentum $\underline{L_{Edd}}$ only

c

motion of swept-up shell

total mass (dark, stars, gas) inside radius R of unperturbed bulge is

$$M_{\rm tot}(R) = \frac{2\sigma^2 R}{G}$$

but swept-up gas mass $M(R) = \frac{2f_g\sigma^2 R}{G}$

forces on shell are gravity of mass within R, and wind ram pressure: since gas fraction f_g is small, gravitating mass inside Ris $\simeq M_{\text{tot}}(R)$: equation of motion of shell is

$$\frac{\mathrm{d}}{\mathrm{d}t}[M(R)\dot{R}] + \frac{GM(R)[M + M_{\mathrm{tot}}(R)]}{R^2} = 4\pi R^2 \rho v^2 = \dot{M}_{\mathrm{out}}v = \frac{L_{\mathrm{Edd}}}{c}$$

where M is the black hole mass

using $M(R), M_{tot}(R)$ this reduces to

$$\frac{\mathrm{d}}{\mathrm{d}t}(R\dot{R}) + \frac{GM}{R} = -2\sigma^2 \left[1 - \frac{M}{M_{\sigma}}\right]$$
$$M_{\sigma} = \frac{f_g \kappa}{\pi G^2} \sigma^4$$

integrate equation of motion by multiplying through by $R\dot{R}$: then

$$R^2 \dot{R}^2 = -2GMR - 2\sigma^2 \left[1 - \frac{M}{M_{\sigma}}\right] R^2 + \text{constant}$$

where

using $M(R), M_{tot}(R)$ this reduces to

$$\frac{\mathrm{d}}{\mathrm{d}t}(R\dot{R}) + \frac{GM}{R} = -2\sigma^2 \left[1 - \frac{M}{M_{\sigma}}\right]$$
$$M_{\sigma} = \frac{f_g\kappa}{\pi G^2}\sigma^4$$

integrate equation of motion by multiplying through by $R\dot{R}$: then

$$R^{2}\dot{R}^{2} = -2GMR - 2\sigma^{2}\left[1 - \frac{M}{M_{\sigma}}\right]R^{2} + \text{constant}$$

if $M < M_{\sigma}$, no solution at large R (rhs < 0)

Eddington thrust too small to lift swept-up shell

where

using $M(R), M_{tot}(R)$ this reduces to

$$\frac{\mathrm{d}}{\mathrm{d}t}(R\dot{R}) + \frac{GM}{R} = -2\sigma^2 \left[1 - \frac{M}{M_{\sigma}}\right]$$
$$M_{\sigma} = \frac{f_g \kappa}{\pi G^2} \sigma^4$$

where

integrate equation of motion by multiplying through by $R\dot{R}$: then

$$R^2 \dot{R}^2 = -2GMR - 2\sigma^2 \left[1 - \frac{M}{M_{\sigma}}\right] R^2 + \text{constant}$$

if $M < M_{\sigma}$, no solution at large R (rhs < 0)

Eddington thrust too small to lift swept-up shell

but if $M > M_{\sigma}, \dot{R}^2 \to 2\sigma^2$, and shell can be expelled completely

critical value

$$M_{\sigma} = \frac{f_g \kappa}{\pi G^2} \sigma^4 \simeq 2 \times 10^8 M_{\odot} \sigma_{200}^4$$

remarkably close to observed $M - \sigma$ relation despite effectively no free parameter ($f_g \sim 0.1$) (King, 2003; 2005)

shells confined to vicinity of BH until $M = M_{\sigma}$

transition to energy-driven flow once M_{σ} reached

close to quasar shocked gas cooled by inverse Compton effect (momentum-driven flow)

but once $M > M_{\sigma}$, R can exceed R_C : wind shock no longer cools

wind shock is adiabatic: hot postshock gas does PdV work on surroundings

bulge gas driven out at high speed $v_e = \left[\frac{2\eta\sigma^2 c}{3f_g}\right]^{1/3} \simeq 1000\sigma_{200}^{2/3} \text{ km s}^{-1}$

density contrast => energy-driven outflow
shock may be Rayleigh-Taylor unstable

two-phase medium: gamma-rays and molecular emission mixed

large--scale high speed molecular outflows, e.g. Mrk 231:

galaxy bulge should produce gamma-ray emission

outer shock runs ahead of contact discontinuity into ambient ISM: velocity jump across it is a factor $(\gamma + 1)/(\gamma - 1)$: fixes velocity as

$$v_{\text{out}} = \frac{\gamma + 1}{2} \dot{R} \simeq 1230 \sigma_{200}^{2/3} \left(\frac{lf_c}{f_g}\right)^{1/3} \text{ km s}^{-1}$$

and radius as

$$R_{\rm out} = \frac{\gamma + 1}{2}R$$

outflow rate of shocked interstellar gas is

$$\dot{M}_{\rm out} = \frac{\mathrm{d}M(R_{\rm out})}{\mathrm{d}t} = \frac{(\gamma+1)f_{\rm g}\sigma^2}{G}\dot{R}$$

$$\dot{M}_{\rm out} \simeq 3700 \sigma_{200}^{8/3} l^{1/3} \ M_{\odot} \,{\rm yr}^{-1}$$

AGN feedback: Herschel (molecular outflows)

Mrk 231 – OH Outflow terminal velocity (obs); ~1.100 km/s ~1.0 kpc R_{out} (model) outflow rate (dM/dt): \sim 1.200 M_o/yr ~100 M_o/yr SFR: gas mass (from CO): $4.2 \times 10^9 M_{\odot}$ depletion time scale (M_{gas}/\dot{M}) : ~4 x 10⁶ yr $T = \frac{1}{2}M_{\rm gas}v^2$ \geq 10⁵⁶ ergs mechanical energy: $P = \frac{T}{t_{\rm dyn}}$ mechanical luminosity: $\geq 1\% L_{TR}$

Eddington winds

momentum outflow rate

$$\dot{M}_{
m out}v = rac{L_{
m Edd}}{c} = \eta \dot{M}_{
m Edd}$$
 $v = rac{\eta c}{\dot{m}} \sim 0.1c$

where
$$\dot{m} = \dot{M}_{\rm out} / \dot{M}_{\rm Edd} \sim 1$$

energy outflow rate

$$\frac{1}{2}\dot{M}_{\rm out}v^2 = \frac{\eta}{2}.\eta c^2 \dot{M}_{\rm out} = \frac{\eta}{2}L_{\rm Edd} \simeq 0.05L_{\rm Edd}$$

speed

Fig. 12. Correlation between the kinetic power of the outflow and the AGN bolometric luminosity. Symbols and colour-coding as in Fig. 8. The grey line represents the theoretical expectation of models of AGN feedback, for which $P_{K,OF} = 5\% L_{AGN}$. The red dashed line represents the linear fit to our data, excluding the upper limits. The error bar shown at the bottom-right of the plot corresponds to an average error of ± 0.5 dex.

spirals: bulge outflow pressure => disc star formation

inhomogeneous ISM?

if ISM is patchy, of two-temperature effects important, not obvious that wind shocks always cool

could outflows be energy-driven at all radii? (Faucher-Giguere & Quataert, 2012, Bourne & Nayakshin 2013, 2014)

if most of mass in dense blobs, these feel only *drag* of wind

inhomogeneous ISM?

if most of mass in dense blobs, these feel only drag of wind

in simple cases this is dimensionally \sim ram pressure - maybe M-sigma OK?

but not obvious -- e.g. D'Alembert's paradox -- no drag on smooth objects

inhomogeneous ISM?

calculation of drag => boundary layer; unstable, numerically difficult

instabilities producing blobs also numerically difficult

two-fluid effects on Compton cooling also difficult!

but *observational distinction* is clear:

momentum-driven = small-scale

energy-driven = large-scale

evidence for localised behaviour?

1. super--solar QSO abundances same gas swept up, turned into stars, recycled => enrichment in very centre of galaxy

2. removal of DM cusps: repeated small--scale (momentum-driven) outflow and fallback very effective (cf Pontzen & Governato 2012, who used SNe (less mass, less effective)

3. inner parts of most galaxy discs do not show enhanced star formation => no energy-driven outflow most of the time

4. metals produced by stellar evolution in galaxy eventually expelled to large radii by energy--driven outflow -- CGM

SMBH feedback: summary

AGN have Eddington winds, $\dot{M}v = L_{\rm Edd}/c$, $v \sim 0.1c$

Compton cooling by AGN radiation field effective out to $R_C \lesssim 0.5 \ \mathrm{kpc}$

resulting momentum-driven flow establishes $M - \sigma$ relation

once $M > M_{\sigma}$ shock passes R_C and flow become energy-driven, with $v \sim 1000 \text{ km s}^{-1}$ and $\dot{M}_{out} \sim \text{few } 1000 \text{M}_{\odot} \text{ yr}^{-1}$ (molecular)

galaxy bulge becomes `red and dead', but can stimulate disc SF

 $M - \sigma$ divides localised from global behaviour: super-solar abundances in AGN, removal of DM cusps (local) metal pollution of CGM (local to global)

for more details see King & Pounds, ARAA, 2015