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galaxy knows about central SMBH
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how?
SMBH mass is completely insignificant: M ~ 10_3Mbulge ,

so 1ts gravity affects only a region

GM M
R = — ~ 102—8 parsec
o 9200

(Ms = M/10°Myg, , 0200 = /200 kms™")
- far smaller than bulge

why does the galaxy notice the hole?
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well....

SMBH releases accretion energy ~ 0.1Mpg gc? ~ 1001 erg
galaxy bulge binding energy Myo? ~ 10°% erg

galaxy notices hole through energy release:

“feedback’
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SMBH — host connection

SMBH 1n every large galaxy (Soltan)
but only a small fraction of galaxies are AGN

= SMBH grow at Eddington rate in AGN

ne?M = L = Lggq = 47TC;MC , k = electron scattering opacity

=2 AGN should produce Eddington winds
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Super-Eddington Accretion

most photons eventually escape along cones near axis

most mass
expelled as

diS C WlIld

on average photons give up all
momentum to outflow after ~ 1 scattering
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Eddington winds

momentum outflow rate

: Lyaq :
Moutv = = NMraq
speed
C
V= 77— ~ 0.1c
m

where m = Mout/MEdd ~ 1

energy outflow rate

(King & Pounds, 2003: cf later cosmological simulations)
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P Cygni profile of iron K- alpha: wind with U =~ 0.1c
‘ultrafast outflow’ -- "UFO’
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outflow affects galaxy bulge

SMBH releases accretion energy ~ 0.1Mpg gc? ~ 1001 erg
galaxy bulge binding energy Mpo? ~ 10°% erg

even though only a fraction (n/2) ~ 0.05 of accretion energy is in
mechanical form, this is more than enough energy to unbind the bulge

how does the bulge survive?
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wind shock
wind must collide with bulge gas, and shock — what happens?

either

(a) shocked gas cools: ‘momentum—driven flow’
negligible thermal pressure -
most energy lost

or

(b) shocked gas does not cool: ‘energy—driven flow’

thermal pressure > ram pressure

Compton cooling by quasar radiation field very effective out to
cooling radius Rs ~ 50 — 500 pc (cf Ciott1 & Ostriker, 1997, 2001)

initial expansion into bulge gas 1s driven by momentum Lgqq only
C
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swept-up ambient gas, mildly shocked
wind shock

outer shock
driven into
ambient gas

_

ambient gas

Eddington
wind,
v~ 0.1c
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motion of swept-up shell

total mass (dark, stars, gas) inside radius R of unperturbed bulge is

20°R
Mtot (R) — G
2f,0°R
but swept-up gas mass M(R) = fgé

forces on shell are gravity of mass within R , and wind ram pressure:

since gas fraction f, is small, gravitating mass inside R
is ~ Mot (R): equation of motion of shell is

GM(R)[M + Mot (R)] _ I R2 0% = Moyt — Lgad

CIM(R)ER] + = C

dt

where M 1is the black hole mass
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using M (R), M.t (R) this reduces to

d : GM M
— T _95%[1 -
dt(RR)+ = o [ MJ]
fgk 4
where M, = ﬂ_GQO'

integrate equation of motion by multiplying through by RR: then

: M
R’°R? = —2GMR — 202 [1 — ﬁ] R? + constant
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using M (R), M.t (R) this reduces to

d : GM M
— T _95%[1 -
dt(RR)+ = o [ M(,]
fgk 4
where M, = ﬂ_GQO'

integrate equation of motion by multiplying through by RR: then

M,
if M < M,, no solution at large R (rhs < 0)

: M
R’°R? = —2GMR — 202 [1 — —] R? + constant

Eddington thrust too small to lift swept-up shell
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using M (R), Mo (R) this reduces to

d : GM M
— T _95%[1 -
dt(RR)+ = o [ MJ]
fgk 4
where M, = ﬂ_GQO'

integrate equation of motion by multiplying through by RR: then

M,
if M < M,, no solution at large R (rhs < 0)

: M
R’°R? = —2GMR — 202 [1 — —] R? + constant

Eddington thrust too small to lift swept-up shell

but if M > M, R? = 202, and shell can be expelled completely
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critical value

(G2

remarkably close to observed M — o relation despite effectively
no free parameter (f, ~ 0.1) (King, 2003; 2005)

f_jhlvl;no Y t ' 1 ' IE
" @ Dynomical Mamses (AMO0) —/
108 g— ?
2 . ' SMBH mass grows until
§ | { Eddington thrust expels gas feeding it
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shells confined to vicinity
OfBH untll M — MO’

GM
R < Rine ~ few x — ~ 10— 5003500 PC
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transition to energy-driven flow once M, reached

close to quasar shocked gas cooled by inverse Compton effect
(momentum-driven flow)

but once M > M,, R can exceed R¢c: wind shock no longer cools

wind shock is adiabatic: hot postshock gas does PdV work
on surroundings

bulge gas driven out at high speed

'2 2 11/3
o e ~ 10000%;’ kms™!

| 3y

Ve —
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Zubovas & King,

o g 2012a
Shock front . -
(momentum and o=’ —
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once BH grows toM > M, shock passes cooling radius
=> large-scale energy-driven flow
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density contrast => energy-driven outflow
shock may be Rayleigh-Taylor unstable

two—phase medium: gamma—rays and molecular emission mixed

large--scale high speed molecular outflows, e.g. Mrk 231:

galaxy bulge should produce gamma-ray emission
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outer shock runs ahead of contact discontinuity into
ambient ISM: velocity jump across it is a factor (y 4+ 1)/(y — 1):
fixes velocity as

. TARE
Vout = v+ ~ 12300%3 <i> km s~ *
2 Jg

and radius as 1
Rout — VTR

outflow rate of shocked interstellar gas is

: dM (Roy 1 2.
Mout — Eit t) _ (fy_i_G)ng- R

Mout ~ 3700036311/3 Mg yr_l
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AGN feedback: Herschel (molecular outflows)

Mrk 231 — OH Outflow

terminal velocity (obs):'~1.100 km/s
Rout (Mmodel) ~1.0 kpc

outflow rate (dM/dt): ~1.200 My/yr
SFR: ~100 My /yr
gas mass (from CO): 4.2x10° Mg

depletion time scale (M_,./M): ~4 x 106 yr

mechanical energy: = 10°% ergs

mechanical luminosity: = 1% L,




Eddington winds

momentum outflow rate

: Lyaq :
Moutv = = NMraq
speed
C
V= 77— ~ 0.1c
m

where m = Mout/MEdd ~ 1

energy outflow rate
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@ Maiolino et al.,
| 2013
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Fig. 12. Correlation between the kinetic power of the outflow and the
AGN bolometric luminosity. Symbols and colour-coding as in Fig. 8.
The grey line represents the theoretical expectation of models of AGN
feedback, for which Pk or = S%Lagn. The red dashed line represents
the linear fit to our data, excluding the upper limits. The error bar

shown at the bottom-right of the plot corresponds to an average error
of £0.5 dex.
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spirals: bulge outflow pressure => disc star formation

expanding shocked bulge gas

galaxy disc

N\,

bulge outflow pressurizes central
disc, and stimulates star formation

bulge quenched, disc briefly fired up?
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inhomogeneous ISM?

if ISM 1s patchy, of two-temperature effects important, not obvious that
wind shocks always cool

could outflows be energy-driven at all radi1? (Faucher-Giguere &
Quataert, 2012, Bourne & Nayakshin 2013, 2014)

if most of mass 1n dense blobs, these feel only drag of wind

\ @/
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inhomogeneous ISM?
1f most of mass in dense blobs, these feel only drag of wind

in simple cases this is dimensionally ~ ram pressure - maybe M-sigma
OK?

but not obvious -- e.g. D’ Alembert’s paradox -- no drag on smooth
objects
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inhomogeneous ISM?

calculation of drag => boundary layer; unstable, numerically difficult
instabilities producing blobs also numerically difficult
two-fluid effects on Compton cooling also difficult!

but observational distinction 1s clear:

momentum-driven = small-scale

energy-driven = large-scale
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evidence for localised behaviour?

1. super--solar QSO abundances
same gas swept up, turned into stars, recycled => enrichment in very
centre of galaxy

2. removal of DM cusps: repeated small--scale (momentum-driven)
outflow and fallback very effective (cf Pontzen & Governato 2012,
who used SNe (less mass, less effective)

3. inner parts of most galaxy discs do not show enhanced star
formation => no energy-driven outflow most of the time

4. metals produced by stellar evolution 1in galaxy eventually expelled
to large radi1 by energy--driven outflow -- CGM
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SMBH feedback: summary

AGN have Eddington winds, Mv = Lgaq/c ,v ~ 0.1¢
Compton cooling by AGN radiation field effective out to R < 0.5 kpc
resulting momentum-driven flow establishes M — g relation

once M > M, shock passes R and tlow become energy -driven,
with v ~ 1000 km s~ and M,y ~ few 1000Mg yr~*(molecular)

galaxy bulge becomes ‘red and dead’, but can stimulate disc SF
M — o divides localised from global behaviour:
super-solar abundances in AGN, removal of DM cusps (local)

metal pollution of CGM (local to global)

for more details see King & Pounds, ARAA, 2015
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