The Stellar Initial Mass Function of Massive Galaxies

Aaron A. Dutton

Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany

Quenching and Quiescence, Heidelberg, July 2014

Motivation

What is the (integrated) efficiency of star formation in massive dark matter haloes?

Motivation

Different studies agree, but all assume a universal stellar Initial Mass Function (IMF)

Why the IMF is important for galaxy masses

Light comes from ~2 M_{sun} stars

Mass comes from low mass stars, or stellar remnants of massive stars

Feedback

- Supernova rates
- Gas recycling

Van Dokkum 2008

What do we know about the Stellar IMF?

Star Counts in the Milky Way

- Power-law at high masses (Salpeter 1955)
- Turn over at low masses (Kroupa 2001, Chabrier 2003

Galaxy Dynamics: Upper limits to M/L

Salpeter too "heavy" for spiral galaxies and fast rotating early-type galaxies
(Bell & de Jong 2001; Cappellari et al. 2006)

Consistent with a universal IMF

Van Dokkum 2008

Upper limits: Strong

Brewer et al. 2012

✦ Strong lensing: projected total mass with critical curve: Mlens

Stellar Pop Synthesis: projected stellar mass within critical curve, assuming an IMF: Msps

f* = M_{SPS} / M_{lens}

A physical IMF has f* < 1

Upper limits: Strong Lensing

- ✦ IMF is lighter than Salpeter in massive spirals
- ✦ IMF can be ~2 x heavier than Salpeter in most massive galaxies

Brewer et al. 2012

0820+4847 0930+2855 1032 + 53221117 + 47041313+0506

Lensing+Dynamics Scaling Relations Massive Early-Type Galaxies σ~250 ± 40 km/s SLACS - Sloan Lens ACS Survey

Bolton et al. 2006, 2008; Auger et al. 2009

Lensing+Dynamics with Dark Matter Halo

 $\log M_{star} / M_{SPS} = \log \alpha + \eta (\log M_{star} - 11)$

All reasonable choices of DM halo result in non-MW IMF

A bottom heavy IMF in massive ellipticals

A bottom heavy IMF in massive ellipticals

Van Dokkum & Conroy 2010

Full Spectral Fitting

Conroy & van Dokkum 2012

Correlation with dispersion, alpha abundance

Conroy & van Dokkum 2012

Consistency check: M/L_{SPS} < M/L_{dyn} spectral masses vs total dynamical masses Conroy & van Dokkum 2012

We expect some galaxies to be scattered here due to measurement errors.

total dynamical mass / light (SAURON)

Consistency Check: Dense Galaxies

Select early-type galaxies from SDSS with surface densities

(SPS masses from MPA/JHU: ugriz, BC03, Chabrier IMF)

Dynamical Mass vs SPS Mass

Dynamical masses from Spherical Jeans equations
 Only mild (5%) dependence on anisotropy (since R_{ap} > R_e)

Evidence for Mass-Follows-Light

Relation between offsets of VM ($\Delta \log V$) and RM ($\Delta \log R$) relations depends on dark matter fraction (Courteau & Rix 1999)

Evidence for Mass-Follows-Light

Relation between offsets of VM ($\Delta \log V$) and RM ($\Delta \log R$) relations depends on dark matter fraction (Courteau & Rix 1999)

Correlation between aperture velocity dispersion (σ_{ap}), and size (R_e) at fixed stellar pop mass (M_{SPS})

(150 000 early-type galaxies from SDSS - Dutton et al. 2013)

Evidence for Mass-Follows-Light

Relation between offsets of VM ($\Delta \log V$) and RM ($\Delta \log R$) relations depends on dark matter fraction (Courteau & Rix 1999)

Full Sample $\Delta \log \sigma = -0.3 \Delta \log R$ Tilt of the Fundamental Plane

Dense galaxies follow the virial FP: $\Delta \log \sigma = -0.5 \Delta \log R$ Implies mass follows light

Spectra and dynamics agree!

Correlation with dispersion

ATLAS3D, 260 nearby early-types

ACDM based models of Early-Type Galaxies

Stars (4 parameters: R_{exp} , R_{dev} , f_{dev} , Δ_{IMF} - stellar mass normalization)
 Dark Matter (3 parameters: M_{vir}; c; v - dark halo response)

Galaxy Structure: SDSS Simard et al. (2011)

Halo masses: WL+SK Dutton et al. (2010) Halo structure: N-body sims Macciò et al. (2008)

ACDM based models of Early-Type Galaxies

ASSUMPTIONS:

Spherical Jeans equation to predict SDSS aperture velocity dispersions

$$\frac{d(\rho_*\sigma_r^2)}{dr} + \frac{2\beta}{r}\rho_*\sigma_r^2 = -\rho_*\frac{GM(r)}{r^2}$$

No stellar M/L gradients

Constant anisotropy

Scatter in galaxy size is UNCORRELATED with:

- dark halo response;
- scatter in halo mass;
- scatter in halo concentration.

STEP 1:

Use the Faber-Jackson relation to constrain allowed combinations of halo response and IMF

Degeneracy between IMF and dark matter

Stellar Pop Synthesis Mass

STEP 2: Use the Fundamental Plane to break the halo response - IMF degeneracy

Correlation between aperture velocity dispersion (σ_{ap}), and size (R_e) at fixed stellar pop mass (M_{SPS})

(150 000 early-type galaxies from SDSS - Dutton et al. 2013)

Fundamental Plane breaks the degeneracy

Why? Dark Matter dampens the FP

Thick black lines = acceptable model

Dutton, Macciò, Mendel, Simard 2013

Summary

Stellar mass-to-light ratios of massive galaxies are a factor ~ 2 higher than predicted by a Milky Way IMF

Testing the model assumptions

Strong lensing enables robust measurement of average mass density slope inside ~ half-light radius

Testing the model assumptions

Select a sub-sample of galaxies with σ ~250 ± 40 km/s

Lensing gives same result as fundamental plane!

It gets better:

Select a sub-sample of galaxies with σ ~250 ± 40 km/s NFW model matches correlations as well!

Dutton & Treu 2014