

Nikos Gianniotis, Postdoc

Astroinformatics Group @ Heidelberg Institute for Theoretical Studies (HITS) nikos.gianniotis@h-its.org

I am a computer scientist working in machine learning

Metric properties of eclipsing binary systems

Approximate Bayesian inference

Reverberation Mapping

Xray series from GRS1915+105

Heidelberg Institute for Theoretical Studies

Mixed Variational Inference

Nikos Gianniotis Astroinformatics Group

Acknowledgements: Christoph Schnoerr - University of Heidelberg Christian Molkenthin - University of Potsdam

Overview

- Start by discussing why Bayesian inference is important
- Bayesian inference is difficult to carry it out in many cases
- The talk is about overcoming these computational difficulties
- Two elements:
 - How to overcome the difficulty (spoiler: monte carlo average)
 - How to do it efficiently *(spoiler: employ Laplace approximation)*

Bayesian Inference

• Bayesian inference is the consistent use of probabilities in reasoning This means we have to play by certain rules

$$p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

- \mathcal{D} are the data, and $w \in \mathbb{R}^d$ are the model parameters
- Bayes tells us how to work out the set of all likely solutions ${oldsymbol W}$

- 1. We learn a regression model to model dependency between x and y
- 2. The model possesses parameters w
- 3. However, there are many parameters w that are likely

- 1. We learn a regression model to model dependency between x and y
- 2. The model possesses parameters w
- 3. However, there are many parameters w that are likely

- 1. We learn a regression model to model dependency between x and y
- 2. The model possesses parameters w
- 3. However, there are many parameters w that are likely

- 1. We learn a regression model to model dependency between x and y
- 2. The model possesses parameters w
- 3. However, there are many parameters w that are likely

- 1. We learn a regression model to model dependency between x and y
- 2. The model possesses parameters w
- 3. However, there are many parameters w that are likely

- 1. We learn a regression model to model dependency between x and y
- 2. The model possesses parameters w
- 3. However, there are many parameters w that are likely

Propagate uncertainty

- 1. We know the density of likely solutions, i.e. the posterior distribution
- 2. We can pose question and reason probabilistically
- 3. E.g. what is the probability that p(y>6|x=-1.1)? It is 0.625

Problem statement

- Necessary calculations often intractable! We need approximations!
- But let's look at how things can quickly turn ugly ...
- The culprit is the denominator in

$$p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

Problem statement

- Necessary calculations often intractable! We need approximations!
- But let's look at how things can quickly turn ugly ...
- The culprit is the denominator in

$$p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

Analytical calculations possible

$$p(w|\mathcal{D}) = \frac{\prod_{n=1}^{N} \mathcal{N}(y_n | w^T x, \sigma^2) \ \mathcal{N}(w | 0, \alpha^{-1} I)}{\int \prod_{n=1}^{N} \mathcal{N}(y_n | w^T x, \sigma^2) \ \mathcal{N}(w | 0, \alpha^{-1} I) dw}$$

Problem statement

- Necessary calculations often intractable! We need approximations!
- But let's look at how things can quickly turn ugly ...
- The culprit is the denominator in

$$p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

Analytical calculations not possible

$$p(w|\mathcal{D}) = \frac{\prod_{n=1}^{N} \mathcal{S}t(y_n | w^T x, \sigma^2, \nu) \ \mathcal{N}(w | 0, \alpha^{-1}I)}{\int \prod_{n=1}^{N} \mathcal{S}t(y_n | w^T x, \sigma^2, \nu) \ \mathcal{N}(w | 0, \alpha^{-1}I) dw}$$

We need to approximate

- We cannot calculate the exact true posterior $p(w|D) \frown p(D|w) p(w)$
- But we can find an approximation q(w) that is close to p(D|w) p(w)
- How good is the approximation? Use Kullback-Leibler Divergence:

$$D_{KL}(q||p) = -\int q(w) \log \frac{p(\mathcal{D}|w)p(w)}{q(w)} dw$$

• Typically we choose q(w) to be Gaussian:

$$q(w) = \mathcal{N}(w|\mu, \Sigma)$$

We need to approximate

- We cannot calculate the exact true posterior $p(w|D) \frown p(D|w) p(w)$
- But we can find an approximation q(w) that is close to p(D|w) p(w)
- How good is the approximation? Use Kullback-Leibler Divergence:

$$D_{KL}(q||p) = -\int q(w) \log \frac{p(\mathcal{D}|w)p(w)}{q(w)} dw$$

• Typically we choose q(w) to be Gaussian:

$$q(w) = \mathcal{N}(w \mu, \Sigma)$$
 Free parameters to optimise

$$-\int q(w)\log\frac{p(\mathcal{D},w)}{q(w)}dw$$

$$-\int q(w)\log\frac{p(\mathcal{D},w)}{q(w)}dw = -\int q(w)\log p(D,w)p(w) + \int q(w)\log q(w)dw$$

$$-\int q(w)\log\frac{p(\mathcal{D},w)}{q(w)}dw = -\int q(w)\log p(D,w)p(w) + \int q(w)\log q(w)dw$$

$$= -\int q(w)\log p(D,w)p(w) - \mathcal{H}[q]$$

$$-\int q(w)\log\frac{p(\mathcal{D},w)}{q(w)}dw = -\int q(w)\log p(D,w)p(w) + \int q(w)\log q(w)dw$$
$$= -\int q(w)\log p(D,w)p(w) - \mathcal{H}[q]$$

$$= -\int \mathcal{N}(w|\mu, \Sigma) \log p(\mathcal{D}, w) dw - \mathcal{H}[q]$$

$$-\int q(w)\log\frac{p(\mathcal{D},w)}{q(w)}dw = -\int q(w)\log p(D,w)p(w) + \int q(w)\log q(w)dw$$

$$= -\int q(w)\log p(D,w)p(w) - \mathcal{H}[q]$$

$$= -\int \mathcal{N}(w|\mu, \Sigma) \log p(\mathcal{D}, w) dw - \mathcal{H}[q]$$

$$\approx -\frac{1}{S} \sum_{s=1}^{S} \log p(\mathcal{D}, w_s) - \mathcal{H}[q]$$

$$-\int q(w)\log\frac{p(\mathcal{D},w)}{q(w)}dw = -\int q(w)\log p(D,w)p(w) + \int q(w)\log q(w)dw$$
$$= -\int q(w)\log p(D,w)p(w) - \mathcal{H}[q]$$

$$= -\int \mathcal{N}(w|\mu, \Sigma) \log p(\mathcal{D}, w) dw - \mathcal{H}[w]$$

$$= -\int \mathcal{N}(w|\mu, \Sigma) \log p(\mathcal{D}, w) dw - \mathcal{H}[q]$$

$$S \sum_{s=1}^{S} \log p(\mathcal{D}|\mu + \Sigma^{\frac{1}{2}} z_s) - \mathcal{H}[q]$$
$$= -\frac{1}{S} \sum_{s=1}^{S} \log p(\mathcal{D}|\mu + \Sigma^{\frac{1}{2}} z_s) - \mathcal{H}[q]$$

 $\approx -\frac{1}{2} \sum_{k=1}^{S} \log p(\mathcal{D} | w_{k}) - \mathcal{H}[a]$

$$-\int q(w)\log\frac{p(\mathcal{D},w)}{q(w)}dw = -\int q(w)\log p(D,w)p(w) + \int q(w)\log q(w)dw$$

$$= -\int q(w)\log p(D,w)p(w) - \mathcal{H}[q]$$

$$= -\int \mathcal{N}(w|\mu, \Sigma) \log p(\mathcal{D}, w) dw - \mathcal{H}[q]$$

$$\begin{split} -\int q(w) \log \frac{p(\mathcal{D}, w)}{q(w)} dw &= -\int q(w) \log p(D, w) p(w) + \int q(w) \log q(w) dw \\ &= -\int q(w) \log p(D, w) p(w) - \mathcal{H}[q] \\ \\ \text{M. Titsias, M. Lazaro-Gredilla, 2014} \\ \text{D. P. Kingma, M. Welling, 2014} \\ \text{N. Gianniotis, C. Schnorr etal, 2015} \\ \text{N. Depraetere, M. Vandebroek, 2016} \end{split} = -\int \mathcal{N}(w|\mu, \Sigma) \log p(\mathcal{D}, w) dw - \mathcal{H}[q] \\ \\ \text{Use property} \\ u_{S} &\sim \mathcal{N}(0, I) \\ w_{S} &= \mu + \Sigma^{\frac{1}{2}} z_{S} \\ \end{bmatrix} \qquad \approx -\frac{1}{S} \sum_{s=1}^{S} \log p(\mathcal{D}(\mu + \Sigma^{\frac{1}{2}} s) - \mathcal{H}[q] \\ \\ \text{Free parameters} \\ \text{Objective to minimise} \\ \end{split}$$

Gaussian posterior needs many parameters

$$q(w) = \mathcal{N}(w|\mu, \Sigma)$$

- We need **d** parameters for the mean μ
- We need d(d+1)/2 parameters for the covariance \sum
- E.g. a problem with $w \in \mathbb{R}^{50}$, needs 1325 Gaussian parameters!
- Strategy:reduce the number of parameters in covariance matrix
- Other work:take \sum to be diagonal,d parameters only,lose correlations!
- This work: build covariance matrix using Laplace approximation

Idea: put a Gaussian around the mode

Performed in two steps

Idea: put a Gaussian around the mode

Performed in two steps

1. Locate mode m by following gradient

Idea: put a Gaussian around the mode

Performed in two steps

1. Locate mode mby following gradient

Idea: put a Gaussian around the mode

Performed in two steps

- 1. Locate mode mby following gradient
- 2. Calculate local curvature at m as Hessian H

Idea: put a Gaussian around the mode

Performed in two steps

- 1. Locate mode mby following gradient
- 2. Calculate local curvature at m as Hessian H

Gaussian posterior obtained via Laplace reads:

 $p(w|D) \propto p(D|w) p(w)$

$$\mathcal{N}(w|\mu_{LA} = m, \Sigma_{LA} = H^{-1})$$

Mixed Variational Inference

Mixed Variational Inference - first proposal

- Take posterior covariance matrix Σ_{LA} from Laplace
- Define new approximate posterior with

only **d** free parameters:

$$q(w) = \mathcal{N}(w|\mu, \Sigma_{LA})$$

Mixed Variational Inference - second proposal

• Take covariance matrix from Laplace and do eigenvalue decomposition

$$\Sigma_{LA} = U \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ & & \lambda_d \end{bmatrix} U^T$$

• Define new covariance matrix as:

$$\Sigma_{eig} = U \begin{bmatrix} c_1 & 0 \\ & \ddots & \\ & & c_d \end{bmatrix} U^T$$

• New approximate posterior had only 2d free parameters:

$$q(w) = \mathcal{N}(w|\mu, \Sigma_{eig})$$

Mixed Variational Inference - third proposal

- Define two free parameter vectors $U, V \in \mathbb{R}^d$
- Take covariance from Laplace and do cholesky

$$\Sigma_{LA} = C_{LA} C_{LA}^T$$

• Define
$$L = C_{LA} + UV^T$$

 $^{-1}$

 $p(w|D) \mathbf{x} p(D|w) p(w)$

• New approximate posterior had only **3d** free parameters:

$$q(w) = \mathcal{N}(w|\mu, LL^T)$$

 $p(w|D) \propto p(D|w) p(w)$

Numerical simulations

- We compare with Laplace and with Gaussian diagonal posterior
- Compare algorithms in terms of predictive log-likelihood, this means
 - \circ $\,$ sample S number of likely solutions from posterior $\,$

$$w_s \sim q(w)$$

o plug solution in likelihood to see how well we explain the data

$$\frac{1}{S}\sum_{s=1}^{S} p(\mathcal{D}_{test}|w_s)$$

Numerical simulations - Logistic regression

MEDIAN LPD ON TEST DATA FOR LOGISTIC REGRESSION OVER 100 RUNS ON THE DATASETS (HIGHER IS BETTER).

Dataset	Q	N	N_{test}	Laplace	\mathbf{MVI}_{μ}	MVI _{eig}	MVI _{lr}	VI _{diag}
Banana	2	400	4900	-1238.76	-1219.19	-1221.41	-1212.19^{\bullet}	-1253.36
Breast cancer	9	200	77	-42.82	-42.65	-42.53	-42.38	-45.42
Diabetis	8	468	300	-145.98	-145.468	-145.31	-144.89^{\bullet}	-193.27
Solar	9	666	400	-232.64	-232.37	-232.42	-232.07^{ullet}	-234.52
German	20	700	300	-151.71	-151.42	-151.31	-150.70^{ullet}	-179.29
Heart	13	170	100	-39.25	-38.973	-38.96	-38.62	-48.37
Image	18	1300	1010	-304.33	-291.91	-284.19	-284.60	-283.80
Ringnorm	20	400	7000	-309.87	-308.80	-319.67	-309.80	-342.627
Splice	60	1000	2175	-1156.80	-900.00	-897.33	-900.30	-899.501
Thyroid	5	140	75	-11.01	-10.189	-10.189	-9.844^{ullet}	-10.280
Titanic	3	150	2051	-1018.92^{\bullet}	-1019.59	-1021.7	-1020.62	-1023.91
Twonorm	20	400	7000	-452.57	-450.716	-461.10	-447.28	-543.115
Wavenorm	21	400	4600	-947.66	-946.49	-948.62	-950.31	-969.61

Numerical simulations - Multiclass regression

MEDIAN LPD ON TEST DATA FOR MULTICLASS LOGISTIC REGRESSION OVER 100 RUNS ON THE DATASETS (HIGHER IS BETTER).

Dataset	K	Q	N	N_{test}	Laplace	\mathbf{MVI}_{μ}	MVI eig	MVI _{lr}	VI _{diag}
Ecoli	8	7	236	100	-50.32	-48.80	-49.31	-48.52^{\bullet}	-51.39
Crabs	4	5	140	60	-64.59	-64.11	-64.28	-64.10	-68.92
Iris	3	4	105	45	-9.06	-7.53	-6.42	-7.46	-8.17
Soybean	4	35	33	14	-4.10	-2.35	-0.66^{\bullet}	-2.36	-1.67
Wine	3	13	125	53	-5.72	-4.01	-3.33^{\bullet}	-3.94	-4.66
Glass	6	9	150	64	-61.35	-60.39	-59.79	-60.44	-76.26
Vehicle	4	18	593	293	-159.783	-158.39^{\bullet}	-158.60	-159.15	-174.725
Balance	3	4	438	187	-23.5734	-22.7321	-23.2197	-23.078	-31.587

Numerical simulations - Regression with Cauchy errors

	Laplace	\mathbf{MVI}_{μ}	MVI _{eig}	MVI _{lr}	VI _{diag}
LPD	-0.818	-0.771	-0.722	-0.726	-0.736

Conclusions

- Proposed a way to make Bayesian inference
- Contributions:
 - applicable when calculations are intractable (e.g. non-conjugate)
 - we manage to limit the numbers of free parameters
 - proposed q(w) retains correlations in contrast to diagonal posterior
- Demonstrated practical advantages in benchmark problems

Mixed Variational Inference - first proposal

Mixed Variational Inference - second proposal

Mixed Variational Inference - third proposal

