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● Start by discussing why Bayesian inference is important

● Bayesian inference is difficult to carry it out in many cases

● The talk is about overcoming these computational difficulties

● Two elements:

○ How to overcome the difficulty  (spoiler: monte carlo average)

○ How to do it efficiently                (spoiler: employ Laplace approximation)

Overview



● Bayesian inference is the consistent use of probabilities in reasoning

This means we have to play by certain rules

●        are the data, and                      are the model parameters

● Bayes tells us how to work out the set of all likely solutions 

Bayesian Inference



Quantify uncertainty

Why Bayesian Inference? 

1. We learn a regression model to model dependency between x and y

2. The model possesses parameters w

3. However, there are many parameters w that are likely
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Why Bayesian Inference?

Propagate uncertainty

1. We know the density of likely solutions, i.e. the posterior distribution

2. We can pose question and reason probabilistically

3. E.g. what is the probability that p( y>6|x= -1.1)? It is 0.625



Problem statement

● Necessary calculations often intractable! We need approximations!

● But let’s look at how things can quickly turn ugly ...

● The culprit is the denominator in 
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We need to approximate

● We cannot calculate the exact true posterior p(w|D)∝p(D|w) p(w)

● But we can find an approximation q(w) that is close to p(D|w) p(w)

● How good is the approximation? Use Kullback-Leibler Divergence:

● Typically we choose q(w) to be Gaussian:
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Kullback-Leibler divergence (this is how variational inference is done)
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Use property

Objective to minimise

Free parameters



● We need d parameters for the mean 

● We need d(d+1)/2 parameters for the covariance

● E.g. a problem with                  ,    needs 1325 Gaussian parameters!

● Strategy:reduce the number of parameters in covariance matrix

● Other work:take      to be diagonal,d parameters only,lose correlations!

● This work: build covariance matrix using Laplace approximation

Gaussian posterior needs many parameters
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Interlude: Laplace approximation

Idea: put a Gaussian around the mode

Performed in two steps

1. Locate mode m by following gradient

2. Calculate local curvature at m as Hessian H

Gaussian posterior obtained via Laplace reads:
p(w|D)∝p(D|w) p(w)
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Mixed Variational Inference - first proposal

● Take posterior covariance matrix               from Laplace

● Define new approximate posterior with 

only d free parameters:

p(w|D)∝p(D|w) p(w)



Mixed Variational Inference - second proposal

● Take covariance matrix from Laplace and do eigenvalue decomposition

● Define new covariance matrix as:

● New approximate posterior had only 2d free parameters:

p(w|D)∝p(D|w) p(w)



Mixed Variational Inference - third proposal

● Define two free parameter vectors

● Take covariance from Laplace and do cholesky 

● Define

● New approximate posterior had only 3d free parameters:

p(w|D)∝p(D|w) p(w)



MVIμ
adaptation of mean
d # parameters

MVIeig
adaptation of mean, eigenvalues
2d # parameters

MVIlr
adaptation of mean and low rank
3d # parameters

In contrast:
Gaussian with full covariance
d + d(d+1)/2 # parameters

Mixed Variational Inference - all proposals

p(w|D)∝p(D|w) p(w)



Numerical simulations

● We compare with Laplace and with Gaussian diagonal posterior 

● Compare algorithms in terms of predictive log-likelihood, this means

○ sample S number of likely solutions from posterior

○ plug solution in likelihood to see how well we explain the data



Numerical simulations - Logistic regression



Numerical simulations - Multiclass regression



Numerical simulations - Regression with Cauchy errors



Conclusions

● Proposed a way to make Bayesian inference

● Contributions:

○ applicable when calculations are intractable (e.g. non-conjugate)

○ we manage to limit the numbers of free parameters

○ proposed q(w) retains correlations in contrast to diagonal posterior 

● Demonstrated practical advantages in benchmark problems



Mixed Variational Inference - first proposal



Mixed Variational Inference - second proposal



Mixed Variational Inference - third proposal


