

European Research Council

LICL

Knowledge Extraction from Machine Learning

Luisa Lucie-Smith University College London

with H.V. Peiris (UCL, Stockholm), A. Pontzen (UCL), M. Lochner (AIMS), B. Nord (Fermilab)

Lucie-Smith, Peiris, Pontzen (2019), arXiv:1906.06339 Lucie-Smith, Peiris, Pontzen, Lochner (2018), arXiv:1802.04271

Machine learning in Astronomy

Big-data era: many traditional applications of ML.

- data mining
- classification
- data compression
- data and model emulation
- regression
- clustering analyses
- outlier detection

Can ML enable knowledge extraction?

 can we extract new physical insights by studying the learning of ML algorithms?

Credit: Andrew Pontzen, UCL

The genetic modification method

Redshift 45.7 0.05 Gyr Step 0

Suppressed merger

Reference

Enhanced merger

Pontzen+ 1607.02507; Tremmel+ 1607.02151

"Genetically-modified" galaxies

 M_{\star} = 2.8 × 10¹⁰ M_{\odot} $R_{1/2}$ = 1.2 kpc

 M_{\star} = 1.7 × 10¹⁰ M_{\odot} $R_{1/2}$ = 2.0 kpc

Suppressed merger

Reference

Enhanced merger

Non-linear dark matter halo formation

N-body simulations

Difficult *physical* interpretation from numerical studies alone

Insights into dark matter halo collapse from ML?

Approach: Train ML algorithm to learn mapping between initial conditions and dark matter halos from N-body simulations

Aim: gain new physical insights into the process of dark matter halo formation

Lucie-Smith, Peiris, Pontzen (2018, 2019)

ML algorithm: gradient boosted trees

GBTs add new trees to correct the mistakes of the previous ones

Decision Tree

Feature Importance

impurity (MSE)

ML regression model of halo formation

Our choice of features is motivated by existing analytic approximations of halo collapse

Features based on analytic theories of halo collapse

1. Density contrast: motivated by extended Press-Schechter theory

Dark matter halo of mass M(R)

2. Tidal shear field (ellipticity/prolateness: motivated by *Sheth-Tormen theory*

Compute features in spheres of 50 different mass scales

Which features were most informative?

Machine learning model comparison: Kullback-Leibler (KL) divergence

Addition of tidal shear information does not yield an improved halo collapse model in contrast to standard interpretations of Sheth-Tormen theory

Do the results generalise to independent simulations?

One training simulation

ML algorithm learnt **physical connection** between initial conditions and halo masses

Four independent test simulations

What we have learnt so far...

Addition of tidal shear information does not improve halo collapse model

How can we go beyond testing current interpretations of halo collapse?

A deep learning approach to halo formation

Advantages:

- do not require featurization!
- provide as input the "raw data", i.e. the initial density field

Disadvantages:

• how do we extract physical knowledge from the DL algorithm?

Requirements for knowledge extraction from DL

• *interpretability*: How did the DL model reach its predictions? Produce outputs that help us understand inner workings DL model.

 explainability: mapping interpretability onto existing knowledge in the relevant science domain.

Learning physical representations

Iten et al. (2018; arXiv:1807.10300)

Deep learning for knowledge extraction

Lucie-Smith, Peiris, Pontzen, Nord (in prep)

Deep learning for knowledge extraction

- Explainability: What physical information is compressed by neural network learning? Correlated with overdensities?
- Can provide different fields (e.g. density field and tidal shear field) as different 'channels' (like RGB channels for images)

Work in progress...

Conclusions

- ML enabled new, surprising and generalisable insights into halo collapse
- Work in progress: interpretable deep learning networks (no featurization) to extract new physical knowledge about cosmological structure formation

