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Machine learning in Astronomy

Big-data era: many traditional applications of ML.

edata mining

e classification

edata compression

e data and model emulation
°regression

e clustering analyses

e outlier detection

Can ML enable knowledge extraction?

e can we extract new physical insights by studying the
learning of ML algorithms?
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The genetic modification method

Redshift 45.7
0.05 Gyr
Step 0

Suppressed merger Reference Enhanced merger



“Genetically-modified” galaxies
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Non-linear dark matter halo formation

(Gaussian random field
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N-body simulations

Ditficult physical
interpretation from
numerical studies alone




Insights into dark matter halo collapse from ML?

Approach: Train ML algorithm to learn mapping between initial
conditions and dark matter halos from N-body simulations

Aim: gain new physical insights into the process of dark matter
halo formation

Lucie-Smith, Peiris, Pontzen (2018,2019)



ML algorithm: gradient boosted trees

GBTs add new trees to correct the mistakes of the previous ones

l/\‘ 2

o o)
O O ) O O
o] O C @) e} @) @) [} @) @)
@) @) O @) @) @)
f1(X) + fo(X) + f3(X) +

Decision Tree



Feature Importance
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ML regression model of halo formation

Initial conditions (z=99) Final halos (z=0)
Features Output
Properties of the Mass of the halo
local environment ) ML algorithm ) to which each DM
around (GBTs) particle will belong

DM particles at z=0

Our choice of features is motivated by existing analytic
approximations of halo collapse



Features based on analytic theories of halo collapse

1. Density contrast: motivated by extended Press-Schechter theory

O > OC Density contrast above
R threshold &-
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Dark matter halo of mass M(R)

M(R)

2. Tidal shear field (ellipticity/prolateness: motivated by Sheth-Tormen theory

Tidal shear forces distort
spheres into ellipses

’ :
Final halo mass M(R)
depends on tidal shear field

Compute features in spheres of 50 different mass scales



Which features were most informative?

Importance
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Machine learning model comparison:
Kullback-Leibler (KL) divergence

1. Smooth distributions with KDE 2. KL divergence prediction vs truth
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Addition of tidal shear information does not yield an improved halo collapse
model in contrast to standard interpretations of Sheth-Tormen theory

Lucie-Smith, Peiris, Pontzen (2019)



Do the results generalise to independent
simulations?

One training simulation Four independent test simulations
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What we have learnt so far...

Local overdensity

Tidal shear field

Addition of tidal shear information does not
improve halo collapse model

How can we go beyond testing current interpretations of halo
collapse?



A deep learning approach to halo formation

Advantages:

 do not require featurization!
° provide as input the “raw data’, i.e. the initial density field

Input Output
Initial density field Mass of the halo
realization of the  weefp- D[ glgorithm === to which each DM
simulation particle will belong
at z=0
Disadvantages:

e how do we extract physical knowledge from the DL algorithm?



?

How did the DL model reach its predictions

terpretability
Produce outputs that help us understand inner workings DL model

°In

Requirements for knowledge extraction from DL

Parts (layer mixed4b,c) Objects (layer mixed4d,e)

Patterns (layer mixed4a)
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mapping interpretability onto existing knowledge in

the relevant science domain.

e explainability



Learning physical representations

SciNet model
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latent representation

SciNet learns two relevant
physical parameters of damped

pendulum problem
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Latent activation 2



Deep learning for knowledge extraction

Supervised variational encoder

Initial conditions | Latent | Mass of dark
density field ! representation - matter halo
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Latent variables encode most relevant aspects of
initial conditions about final halo masses

Lucie-Smith, Peiris, Pontzen, Nord (in prep)



Deep learning for knowledge extraction
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« Explainability: What physical information is compressed by
neural network learning? Correlated with overdensities?

» Can provide different fields (e.g. density field and tidal shear
field) as different ‘channels’ (like RGB channels for images)

Work in progress...



Conclusions

* ML enabled new, surprising and generalisable insights into halo
collapse

* Work in progress: interpretable deep learning networks (no
featurization) to extract new physical knowledge about
cosmological structure formation




