

Shifu Zhu (Penn State), W. N. Brandt (Penn State), Jianfeng Wu (Xiamen University), et al. (arXiv: 1810.06572)

Highly Radio-Loud Quasars (HRLQs; $\log R > 2.5$)

- The SED of quasars generally does not change with redshift.
- However, HRLQs at z>4 show X-ray enhancement relative to their low-z counterparts (~ 3σ with 12/15 objects having sensitive X-ray coverage, Wu+ 2013).

SAMPLE SELECTION

- We selected all known HRLQs (37 quasars) at z=4-5.5, δ > -40 deg, and $m_{\rm i}{<}21$
- FIRST+NVSS
- New and archival X-ray Observations.

- Our HRLQs show strong broad emission lines in SDSS or other observations.
- Beamed jet emission contributes little optical/UV; accretion-disk continua are well measured.

X-Ray Enhancements in SEDs

- SEDs show nominal IR-to-UV behavior
- X-ray enhancements common
- Grey curve is the matched comparison SED for HRLQs at z
 < 1.5 from Shang et al. (2011)

X-Ray Enhancements in α_{ox}

- α_{ox} is the power-law index between restframe 2500 A and 2 keV ($f_{\nu} \propto v^{\alpha}$).
- $\Delta \alpha_{\text{ox, RQQ}} = \alpha_{\text{ox}} \alpha_{\text{ox, RQQ}}$ (expected), "excess" X-ray emission relative to RQQs, where $\alpha_{\text{ox, RQQ}}$ is from the L_{2keV}-L_{2500A} correlation (Just et al. 2007).
- Δα_{ox,RLQ} = α_{ox}- α_{ox,RLQ} (expected), measures if an object is exceptional compared to general RLQs, where α_{ox,RLQ} is from L_{2keV}-L_{2500A}-L_{5GHz} correlation for RLQs at z = 0.3-2.5 (Miller et al. 2011)

Statistical Tests

>High-redshift (z>4) sample

- 24 quasars
- Median *z*=4.4
- All detected in X-rays.
- >Low-redshift (z<4) sample
 - m_i<20.26
 - 311 quasars
 - Median *z*=1.3
 - 94% X-ray detection fraction.

Fractional IC/CMB model

- $U_{\text{CMB}} \propto (1+z)^4$
- HRLQs at z=4-5.5 are ≈ 2 times X-ray brighter than matched HRLQs at lower redshifts.
- A *fractional* inverse-Compton/cosmic microwave
- background (IC/CMB) model can explain our results at high redshift.
- The X-ray contribution from IC/CMB at z<2 is small.

sxz89@psu.edu

