The imprint of protons on the emission of extended blazar jets

Michael Zacharias, Anita Reimer, Andreas Zech

LUTH, Observatoire de Paris, Meudon, France Centre for Space Research, North-West University Potchefstroom, South Africa

Introduction

Figure 1: Model: one-zone core (dashed red), kpc-scale jet (thin solid), total (thick solid), MZ&Wagner16

- Blazars are well described through the one-zone model
- Noteworthy counter-examples are:
 - AP Librae Hervet+15, Sanchez+16, MZ&Wagner16
 - Centaurus A HESS+20
- Need for extended, kinetic jet models

Potter&Cotter12,13, Zdziarski+14, Lucchini+19, ...

ExHaLe-jet

Figure 2: Sketch: jet cut into numerous slices (dark), in which the kinetic equations for each particle species are solved Figure: courtesy of Jonathan Heil

An Extended Hadro-Leptonic jet model

- Jet length cut into numerous slices, where kinetic equation is solved for each species
 - Injection of primary proton and electron distribution at the base; evolved self-consistently along the jet
 - Injection of secondaries (pions, muons, pairs) in each slice
 - Pairs propagated along with primaries
 - Radiation and neutrino output for each slice
- Geometry currently fixed as
 - Parabolic acceleration region: $\Gamma_b(z) \propto \sqrt{z}$
 - Conical coasting region $\Gamma_b(z) = \text{const.}$
 - Radius: $R(z) \propto \tan \left[0.26/\Gamma_b(z)\right]$
 - Magnetic field derived self-consistently
- Considering internal and external radiation fields
 - Synchrotron, π^0 , Inverse-Compton
 - Accretion Disk, BLR, DT, CMB
 - BLR and DT depend on Accretion Disk

ExHaLe-jet: First results

Figure 3: Total spectrum (observer's frame) with distance evolution (color code) for strong (left) and weak (right) accretion disk.

Figure 4: Total neutrino spectrum (observer's frame) with distance evolution (color code) for a strong (left) and weak (right) accretion disk.

Length scales:

- $z_{max} = 100 \text{pc}, z_{acc} = 1 \text{pc}$
- $\textit{R}_{\textit{BLR}} \sim$ 0.05pc (strong), \sim 0.005pc (weak)
- $R_{DT} \sim$ 1pc (strong), \sim 0.1pc (weak)
- Photon spectrum dominated by leptonic processes (synchrotron, external Compton)
- Strongest contribution around 0.1–1 zacc
- External fields have strong impact (*left*: strong disk, *right*: weak disk)
 - "Compton dominance"
 - p- γ interactions (cf. π^0 bump)
 - Neutrino spectra
- Total jet power sub-Eddington
- Jet power dominated by magnetic field (initial value *B*(0) = 200G)

Michael Zacharias

ExHaLe-jet

ExHaLe-jet: First results

Figure 3: Luminosities (observer's frame) over distance for a strong (left) and weak (right) accretion disk.

• Length scales:

- *z_{max}* = 100pc, *z_{acc}* = 1pc
- $\textit{R}_{\textit{BLR}} \sim$ 0.05pc (strong), \sim 0.005pc (weak)
- $R_{DT} \sim 1 ext{pc} (ext{strong}), \sim 0.1 ext{pc} (ext{weak})$
- Photon spectrum dominated by leptonic processes (synchrotron, external Compton)
- Strongest contribution around 0.1–1 zacc
- External fields have strong impact (*left*: strong disk, *right*: weak disk)
 - "Compton dominance"
 - p- γ interactions (cf. π^0 bump)
 - Neutrino spectra
- Total jet power sub-Eddington
- Jet power dominated by magnetic field (initial value B(0) = 200G)

ExHaLe-jet

Summary

Figure 4: Sketch: jet cut into numerous slices (dark), in which the kinetic equations for each particle species are solved Figure: courtesy of Jonathan Heil

Figure 5: Total spectrum (observer's frame) with distance evolution (color code) for strong (left) and weak (right) accretion disk.

An Extended Hadro-Leptonic jet model

- Flexible, kinetic, hadro-leptonic code to model the emission from an extended jet
- Parameter set results in a leptonic dominance in the spectrum
- Influence of protons (secondaries, neutrinos, etc) important

Summary

Figure 4: Sketch: jet cut into numerous slices (dark), in which the kinetic equations for each particle species are solved Figure: courtesy of Jonathan Heil

the second secon

An Extended Hadro-Leptonic jet model

- Flexible, kinetic, hadro-leptonic code to model the emission from an extended jet
- Parameter set results in a leptonic dominance in the spectrum
- Influence of protons (secondaries, neutrinos, etc) important

Thank you!

Figure 5: Total spectrum (observer's frame) with distance evolution (color code) for strong (left) and weak (right) accretion disk.

BACKUP

Processes considered in the code

Cooling processes:

- Protons: synchrotron, adiabatic, $p-\gamma$, Bethe-Heitler
- Charged pions / muons: synchrotron, adiabatic
- Electrons: synchrotron, adiabatic, inverse Compton

Acceleration processes:

- Fermi I/II, but only as a "re-acceleration"
- Main acceleration through a generic injection term

Photon absorption processes:

- Pair production on all photon fields (external ones angle averaged in the comoving frame after boosting)
- Synchrotron-self absorption
- Photons that left the emission region, are also absorbed in the BLR and DT fields (but no EBL or CMB absorption considered)

Table 1: Parameters and values of the simulation

Parameter	Value	Parameter	Value
Redshift	0.536		
Black hole mass	$3.0 imes 10^8M_\odot$	Initial magnetic field	100 G
Eddington ratio	A : 10 ^{−1}	Frac injected proton luminosity	0.1
	<mark>B</mark> : 10 ^{−3}	Initial proton to electron ratio	1
BLR temperature	10 ⁴ K	Minimum proton Lorentz factor	2
DT temperature	$5.0 imes10^2\mathrm{K}$	Maximum proton Lorentz factor	$2 imes 10^8$
Jet length	100 pc	Proton spectral index	2.5
Acceleration region	1 pc	Minimum electron Lorentz factor	100
Max jet Lorentz factor	30.0	Maximum electron Lorentz factor	$1 imes 10^5$
Jet viewing angle	1.9°	Electron spectral index	3.0
Frac Jet opening angle	0.26		
Frac Initial jet width	10.0		
Frac Escape time scale	10.0		
Frac Acceleration time scale	10.0		

Figure 6: Total spectrum (observer's frame) showing individual contributions for a distance of $\sim 0.1 \text{pc}$

ExHaLe-jet