Gamma-ray emission from pair cascades at the border of broad line regions

Christoph Wendel¹

cwendel@astro.uni-wuerzburg.de

Work together with Josefa Becerra González², Amit Shukla³, David Paneque⁴ and Karl Mannheim¹

¹Universität Würzburg

²Instituto de Astrofísica de Canarias and Universidad de La Laguna

³Indian Institute of Technology Indore

⁴Max-Planck-Institut für Physik

Extragalactic jets on all scales - launching, propagation, termination June 2021

Christoph Wendel

Pair cascades at the border of BLRs

Jets Conference 2021 1/10

Peculiar feature in Markarian 501 - A hint to gap activity?

SED of Mrk 501 from 19.07.2014 (top and middle frame) and from 18. - 20.07.2014 (bottom), observed by the MAGIC telescopes. Dotted lines: Best log-parabola fit Dashed lines: Neglecting data above 1.5 TeV Acciari, et al., 2020, A&A PL, LP and ELP fit of MAGIC data: Inconsistent at $> 3\sigma$

Likelihood ratio test: Broad LP + narrow LP preferred at 4σ versus single LP

Christoph Wendel

Pair cascades at the border of BLRs

Jets Conference 2021 2/10

Peculiar feature in Markarian 501 - A hint to gap activity?

SED of Mrk 501 from 19.07.2014 (top and middle frame) and from 18. - 20.07.2014 (bottom), observed by the MAGIC telescopes. Dotted lines: Best log-parabola fit Dashed lines: Neglecting data above 1.5 TeV Acciari, et al., 2020, A&A

Christoph Wendel

Pair cascades at the border of BLRs

A S T R O P H Y S I K Jets Conference 2021 2/10

Interaction of electron beam with emission line photons

Christoph Wendel

Pair cascades at the border of BLBs

PH Jets Conference 2021 3/10

S

Interaction of electron beam with emission line photons

$$\dot{N}_{i}(\gamma) = \frac{K_{G}}{\sigma \sqrt{(2\pi)}} \cdot \exp\left(-\frac{(\gamma - \gamma_{mean})^{2}}{2 \sigma^{2}}\right)$$

$$m_{0}(x) = K_{lines} \cdot \sum_{i=1}^{4} \frac{K_{line,i}}{x_{0,i}} \cdot \delta_{Dirac} (x - x_{0,i})$$

$$\frac{i}{\frac{1}{2} \frac{30.5}{30.0} \frac{2.00}{0.17}}{\frac{1}{4} \frac{121.5}{5.40} \frac{1}{1} \frac{1}{2} \frac{1}{5.40}}$$

$$\frac{K_{Iine,i}}{K_{Iine,i}} = \frac{1}{1} \frac{K_{Iine,i}}{K_{Iine,i}} \cdot \delta_{Dirac} (x - x_{0,i})$$

$$\frac{K_{Iines}}{K_{Iine,i}} = \frac{1}{1} \frac{K_{Iine,i}}{K_{Iine,i}} \cdot \delta_{Dirac} (x - x_{0,i})$$

vacuum dap

Pair cascades at the border of BLRs

Jets Conference 2021 3/10

ADAF

Christoph Wendel

Julius-Maximilians-**UNIVERSITÄT** WÜRZBURG

Interaction of electron beam with emission line photons

$$\dot{N}_{i}(\gamma) = \frac{K_{G}}{\sigma \sqrt{(2\pi)}} \cdot \exp\left(-\frac{(\gamma - \gamma_{mean})^{2}}{2 \sigma^{2}}\right)$$
emission
$$n_{0}(x) = K_{lines} \cdot \sum_{i=1}^{4} \frac{K_{line,i}}{x_{0,i}} \cdot \delta_{Dirac} (x - x_{0,i})$$

$$\frac{i}{\frac{\lambda_{0,i}/nm}{1}} \frac{Relative flux density}{contribution K_{line,i}} \frac{Line}{H \ Lyman \cdot \beta}$$

$$\frac{1}{4} \frac{30.5}{121.5} \frac{2.00}{5.40} \frac{He \ II \ Lyman \cdot \beta}{H \ Lyman \cdot \alpha}$$

$$\frac{I}{I} \frac{I}{I} \frac{1}{2} \frac{1}{5.40} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{5} \frac{1}{5.40} \frac{1}{1} \frac{1}{$$

 $T_{\rm esc} := \frac{R}{c}$

Julius-Maximilians-**UNIVERSITÄT** WÜRZBURG

Pair cascades at the border of BLRs

PH Jets Conference 2021 3/10

SIK

Interaction of electron beam with emission line photons \Rightarrow Evolution of IC pair cascade

ASTROPHYSIK Jets Conference 2021 4/10

Christoph Wendel

Pair cascades at the border of BLRs

Interaction of electron beam with emission line photons \Rightarrow Evolution of IC pair cascade

Christoph Wendel

Pair cascades at the border of BLRs

A S T R O P H Y S I K Jets Conference 2021 4/10

Fit to observational SED

- Input parameters
 - \Rightarrow electron distribution
 - $\Rightarrow \text{ gamma-ray photon distribution} \\ \Rightarrow F_{\text{casc}}$
- Add SSC component:

 $F = F_{\rm casc} + F_{\rm SSC}$

Quantity	Used value
γ_{\min}	10 ³
γbreak	$4.0 \cdot 10^{5}$
γmax	$3.0 \cdot 10^{6}$
α1	2.0
α_2	3.1
R	2.9 · 10 ¹³ m
В	1.2 · 10 ^{−5} T
δ	20
Electrons' number density	$2.1 \cdot 10^{10} \text{ m}^{-3}$

The SSC parameters used for fitting.

Broadband SED of Mrk 501 from 19.07.2014 (MJD 56857.98). Red dots: MAGIC Black / yellow triangles: Fermi LAT Blue / green: Swift BAT / XRT Pink: KVA / Swift UVOT Green: Metsähovi Grey lines: SSC emission Red line: Cascaded emission Black line: SSC + cascaded emission Acciari. et al., 2020, A&A

Fit to observational SED

- Input parameters
 - \Rightarrow electron distribution
 - $\Rightarrow \text{ gamma-ray photon distribution} \\ \Rightarrow F_{\text{case}}$
- Add SSC component:

 $F = F_{\rm casc} + F_{\rm SSC}$

• Fit peaky feature:

Quantity	Used value
ϕ	1.8°
R	$3.0 \cdot 10^{11} \text{ m}$
K _G	$3.3 \cdot 10^4 \text{ s}^{-1} \text{m}^{-3}$
Klines	$9.7 \cdot 10^{12} \text{ m}^{-3}$
$\gamma_{\rm mean}$	$3.4 \cdot 10^{12} \mathrm{eV}/(m_{\mathrm{e}}c^2)$
σ	$0.23 \gamma_{\text{mean}}$

The cascade parameters used for fitting.

HE and VHE SED of Mrk 501 from 19.07.2014 (MJD 56857.98). Red dots: MAGIC Black / yellow triangles: Fermi LAT Grey lines: SSC emission Red line: Cascaded emission Black line: SSC + cascaded emission Wendel, et al., 2021, A&A

Inferences about Mrk 501

• Accretion flow: $T_{\rm e} \approx 10^{10} \, {\rm K}, \ \dot{m} \approx {\rm few} \, 10^{-4}$

- ▶ Pair production in gap and subsequent multiplication by $10^6 \Rightarrow$ electron beam
- ▶ Cloud reprocessing fraction $\approx 0.01 \Rightarrow$ emission lines
- Electron beam + emission lines
 ⇒ IC pair cascade
- Escaping gamma rays can account for narrow SED feature
- Narrow SED feature can indicate gap activity

Christoph Wendel

Pair cascades at the border of BLRs

Jets Conference 2021 6/10

Gamma-ray emission from 3C 279

SED of 3C 279, observed by the Fermi LAT. Wendel, Shukla and Mannheim, submitted to $\ensuremath{\mathsf{ApJ}}$

Gamma-ray emission from 3C 279

Christoph Wendel

Pair cascades at the border of BLRs

Jets Conference 2021 8/10

Gamma-ray emission from 3C 279

Fermi SED (MJD 58129 - 58150, blue markers) with cascade modeling fits. Brown and red lines: Cascade in BLR photon field Grey lines: Cascade outside of BLR Wendel, Shukla and Mannheim, submitted to ApJ

Fail to meet points for same R, diluted n_0 and non-extreme injection

⇒ Emission not from outside of BLR

Summary

Precision gamma-ray observations reveal complexity beyond the predictions of spherical blob models but in line with the predictions of pair cascade models in external radiation fields.

