GRB Jet energetics and structure

Yuji Urata (NCU)

- Chen, Urata et al. 2020 ApJL, 891, L15
 - "Two Component Jets of GRB160623A as Shocked Jet cocoon afterglow"
- Huang, Urata et al. 2020 ApJ, 897, 69
 - "Orphan GRB afterglow searches with the Pan-STARRS1 COSMOS survey"
- Urata et al. 2019 ApJL, 884, L58
 - "First Detection of Radio Linear Polarization in a Gamma-Ray Burst Afterglow"
- Urata et al. 2015 ApJ 806, 222
 - "Extremely Soft X-Ray Flash as the Indicator of Off-axis Orphan GRB Afterglow"

GRB as Jet

- Establishment of unification of pictures as identical to AGN is critical
- Massive stellar explosion (long GRBs) / NS-NS merger (short GRBs)
 - (1) Efficiency of acceleration (true energetics related with progenitors)
 - (2) Jet structures (cocoon, head of jet)

(1) Efficiency of electron acceleration at external shock

Synchrotron

X-ray

OIR Radio

radiation

Faraday depolarization is only the method.

External shock

Urata+19 ApJL

Internal shock

Various GRB types classified by gamma-ray properties

ALMA established identifying the non-energized electrons of various types of GRBs and their afterglows (1) Energetics (Indicator of mass of progenitors) and Unification

First Detection of Radio Linear in a GRB afterglow

Urata+19 ApJL

ALMA polarimetry for low-luminosity GRB 50

0.27 ± 0.04 % @ 5.2 days (including systematic error)

Only ~ 10% of electrons are accelerated!

Revising total energy ~10 times larger

Further systematic measurements for To Fre various type of GRB is essential for unification picture.

(2-1) GRB Jet structure and unification

- Under standing of jet and surrounding structures of GRBs
- As same as AGN, existence of cocoon was expected

(2-1) First confirmation of Shocked Jet Cocoon Chen, YU et al. 2020 ApJL

Fermi/LAT detected GRB160623A (i.e. energetic event, 3.4 GeV)

- X-ray and radio afterglows exhibited different temporal and spectral evolutions
- Both are explained by forward shock, but different jet collimation with θ_x <4.2° $\theta_{\rm radio}$ = 27°

→ Two component jet

(2-1) First confirmation of Shocked Jet Cocoon Chen, YU et al. 2020 ApJL

Histogram of GRB jet opening angles:

 Both are explained by forward shock, but different jet collimation with

$$\theta_x < 4.2^{\circ}$$
 $\theta_{radio} = 27^{\circ}$

→ Two component jet

Energetics based on 2D MHD modeling:

 $E_{\text{wide}}/E_{\text{narrow}} \sim 0.1$ is consistent with the predicted value (Peng+05) for the collapsar jet

The radio afterglow with the wide jet angle originated from the shocked jet cocoon.

(2-2) Jet structure: Orphan GRB search

- Off-axis viewing of GRB jets produce "orphan GRB afterglow (OA)" (no prompt emission should be observed)
- Detectability of OA depends on the head structure of jet
- Pan-STARRS1 (+ SUBARU/HSC) made the first intensive (3.5 years with daily cadence) wide field optical time domain survey for OA
- Null detection indicates the "top hat" structure of jet is unlikely

Summary

- Toward establishment of unification pictures of massive stellar explosion and compact mergers, acceleration efficiency and jet structures are critical.
- Acceleration efficiency of electrons at external shock is $\sim\!10\%$ for Low-luminosity GRB (GRB171205A)

Urata et al. 2019 ApJL, 884, L58

- Jet structures related with GRBs
 - First detection of shocked jet cocoon

Chen, Urata et al. 2020 ApJL, 891, L15

Top hat structure of jet head is unlikely.

Huang, Urata et al. 2020 ApJ, 897, 69