

Inter Galactic Magnetic field constraints through the gamma ray observations of the Extreme High-frequency-peaked BL Lac candidate HESS 1943+213

Stefano Silvestri^(1,2), Paolo Da Vela^(2,3), Sofia Ventura^(2,4), Giacomo Bonnoli^(2,5)

¹Università di Pisa ²INFN ³Universität Innsbruck ⁴Università di Siena ⁵Universidad de Granada

JETS conference, 17 June 2021

Why the IGMF?

Contribute to solve the long-standing problem of the origin of galactic MFs

Two-fold mechanism

Seed fields

- Small strength
- Small coherence length

Amplification

- Increase strength
- Create coherent
 structure

A. Fletcher (2011)

Blazars as probes for the measutrment of the IGMF

Gamma-gamma reaction and cascade development

Blazars as probes for the measutrment of the IGMF

Gamma-gamma reaction and cascade development

Blazars as probes for the measutrment of the IGMF

HESS J1943+213: a particularly good blazar

HESS J1943+213 characteristics

- Higher VHE flux than archetypal source
- Intermediate redshift (0.21)
- PL index 1.83

Determination of the IGMF from the spectrum

Determination of the IGMF from the spectrum

8

Conservative hypotheses for the IGMF

Exclude all effects that can mimick an IGMF

- Expected GeV flux depends on measured TeV flux (with large errors)
- Systematically underestimate the VHE flux to exclude the risk of overestimating it

$$\frac{dN}{dE} = N_{300} \left(\frac{E}{300 GeV}\right)^{-\gamma} e^{-E/E_{\rm cut}}$$

Minimize the "cascade power"

$$P = \int_{300GeV}^{\infty} E \frac{dN}{dE} dE$$

Conservative hypotheses for the IGMF

10

Simulation of the IGMF effects on the cascade emission

Effects of an increasingly stronger IGMF on the flux

11

Comparison with other studies

Author (date)	Source	Г	$\mathrm{E}_{\mathrm{cut}}[\mathrm{GeV}](\mathrm{type})$	z	Stability [yr]	B _{RMS} limit [G]
Dermer et al. (2011)	1ES 0229+200	1.2	5000 (exp/sharp)	0.14	∞ (3)	$3 \cdot 10^{-16} (10^{-18})$
Dolag et al. (2011)	1ES 0229+200	1.66	20000 (sharp)	0.14	10^{4}	$5 \cdot 10^{-15}$
	RGB J0710+591	1.6	1000 (exp)	0.13	$\infty(2)$	
Taylor et al. (2011)	1ES 0229+200	1.2	5000 (exp)	0.14	$\infty(2)$	$10^{-15} (10^{-18})$
	1ES 1218+304	1.7	2500 (exp)	0.18	$\infty(2)$	
	1ES 0347-121	1.5	800 (exp)	0.188	∞	$2 \cdot 10^{-17}$
Neronov & Vovk (2010)	1ES 0229+200	1.5	3800 (exp)	0.14	∞	$3 \cdot 10^{-16}$
	1ES 1101-232	1.5	1000 (exp)	0.186	∞	
Tavecchio et al. (2011)	RGB 0152-017	-	-	0.08	∞	$3 \cdot 10^{-15}$
	1ES 0229+200	-	-	0.14	∞	$2 \cdot 10^{-15}$
	1ES 0229+200(B)	-	-	0.14	∞	$7 \cdot 10^{-14}$
	1ES 0347-121	-	-	0.188	∞	10^{-14}
	PKS 0584-322	-	-	0.069	∞	$5 \cdot 10^{-15}$
This work	HESSJ1943+213	1.5	2080	0.21	$\infty(8)$ 6	$\cdot 10^{-14} (6.5 \cdot 10^{-15})$

Further improvements and open questions

HESS J1943+213 looks promising, but

- Can we find more sources?
- Can we find better sources? Spectrum? Stability? Distance?
- Better modeling of the source?
- Better IGMF structure simulation (is it worth it?)